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Abstract-Packet switching  offers  attractive  advantages  over  the  more 
conventional  circuit-switched  scheme,  namely,  flexibility in setting  up  user 
connections  and  more  efficient  use  of  resources  after the c o n n q p  is 
established.  However, if user  demands  are  allowed to exceed  the  system 
Capacity.  unpleasant  congestion  effects  occur  which  rapidly  neutralize  the 
delay  and  efficiency  advantages.  Congestion  can  be  eliminated by using  an 
appropriate  set  of  traffic  monitoring  and  control  procedures  called flow 
control  procedures.  Flow  control  can  he  exercised  at  various  levels in a 
packet  network.  The  following  levels  are  identified  and  discussed in this 
Paper: hop level.  entry-to-exit  level.  network  access  level,  and  transport 
level. For each  level,  the  most  representative  techniques  are  surveyed  and 
compared.  Furthermore,  the interaction  hetween  the  different  levels is 
discussed. 

I .  INTRODUCTION 

A packet-switched network may be  thought of as a distrib- 
uted  pool  of  productive resources  (channels, buffers,  and 

switching processors) whose capacity  must  be shared dynam- 
ically by  a  community  of  competing users (or, more generally, 
processes) wishing to  communicate  with each other. Dynamic 
resource  sharing is what distinguishes packet switching from 
the more traditional circuit  switching approach, in which 
network resources  are dedicated  to  each user for  an  entire 
session. The key  advantages of  dynamic sharing are greater 
speed and flexibility in setting  up user connections across 
the  network  and more  efficient use of  network resources 
after  the  connection is established. 

These advantages of  dynamic sharing do  not  come  without 
a  certain danger,  however. Indeed, unless careful control is 
exercised on the user demands,  the users may  seriously  abuse 
the  network. In fact, if the  demands are allowed to  exceed the 
system capacity, highly unpleasant  congestion effects  occur 
which  rapidly  neutralize the delay and efficiency  advantages 
of a  packet  network.  The  type of  congestion that  occurs in 
an  overloaded packet  network is not unlike that observed  in a 
highway network. During  peak hours,  the  demands  often 
exceed the highway capacity, creating large backlogs. Further- 
more,  the  interference  between  transit  traffic  on  the highway 
and  on-ramp  and  off-ramp  traffic reduces the effective through- 
put  of  the highway, thus causing an even more  rapid  increase 
in the backlog. If this positive feedback  situation persists, 
traffic on the highway may come to  a standstill. The  typical 
relationship between effective throughput  and  offered load 
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in a highway system (and,  more generally,  in many  uncontrol- 
led,  distributed  dynamic sharing  systems) is shown  in Fig. 1. 

By properly  monitoring  and  controlling  the  offered load 
many of these  congestion  problems  may be eliminated. In a 
highway system,  it is common to  control  the  input  by using 
access ramp  traffic lights. The objective is to  keep  the  inter- 
ference between transit traffic  and incoming traffic within 
acceptable limits,  and  to prevent the incoming traffic rate 
from exceeding the highway capacity. 

Similar types  of  controls are used in packet switched net- 
works, and are called flow control procedures. As in the 
highway system,  the basic principle is to  keep  the excess 
load out  of  the  network.  The  techniques, however,  are much 
more sophisticated since the  elements  of  the  network (i.e., 
the switching processors) are  intelligent, can communicate 
with each other,  and  therefore can coordinate  their  actions 
in a  distributed  control  strategy. 

' Internal  network congestion may also be relieved by re- 
routing some  of the  traffic from heavily loaded paths to  
underutilized paths.  It is important  to  understand, however, 
that routing can  reduce and, perhaps,  delay network  con- 
gestion;  it  cannot prevent it. We do  not discuss the  inter- 
actions between routing  and flow control in this paper. The 
interested reader is referred to  the  routing  protocol survey 
paper by  Schwartz  and  Stern in this  TRANSACTIONS [5 1 ] . 

The main functions  of flow control in a packet network 

1) prevention of  throughput degradation and loss of ef- 

2) deadlock avoidance, 
3 )  fair allocation of resources among competing users, 

4) speed matching between the  network  and  its  attached 
users. 

Throughput degradation and deadlocks occur because the 
traffic  that has  already  been accepted  into  the  network (i.e., 
traffic  that has  already been allocated network resources) 
exceeds the nominal  capacity  of the  network.  To prevent 
overallocation of resources, the flow control procedure in- 
cludes a set  of constraints  (on buffers that can be allocated, 
on outstanding  packets, on transmission  rates, etc.) which 
can  effectively limit  the access of traffic  into  the  network 
or, more precisely, to  selected  sections  of the  network. These 
constraints may be fixed, or may be dynamically adjusted 
based on traffic  conditions. 

Apart from  the requirement  of throughput  efficiency, 
network resources  must be fairly distributed  among users. 

are: 

ficiency due to  overload, 

and 
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Fig. 1. Effective  throughput  versus  offered  load  in  an  uncontrolled, 
distributed  dynamic  sharing  system. 

Unfortunately, efficiency  and  fairness  objectives do  not al- 
ways  coincide. For  example, referring  back to  our highway 
traffic  situation,  the effective throughput  of  the Long Island 
Expressway could be maximized by  opening all the lanes to 
traffic  from  the Island to New York City  during the morning 
rush hour,  and in the  opposite  direction during the evening 
rush hour. This solution, however,  would also maximize the 
discontent  of  the reverse commuters (and we all know  how 
dangerous  it is to anger a New Yorker)! In packet  networks, 
unfairness conditions can also arise (as we will show  in  the 
following sections);  but  they  tend  to be more  subtle  and less 
obvious than in  highway networks because of  the  complexity 
of the  communications  protqcols. One of  the  functions  of 
flow control,  therefore, is’ io prevent  unfairness by placing 
selective restrictions  on  the  amount of resources that  each 
user (or user group) may acquire, in spite of the negative 
effect  that these restrictions may have on  dynamic resource 
sharing and,  therefore, overall throughput  efficiency. 

Flow control can  be  exercised at various levels in a  packet 
network.  The following levels are identified  and discussed 
in  this  paper. 

1)Hop Level: This level of flow control  attempts  to main- 
tain  a  smooth flow of traffic  between  two neighboring nodes 
in  a  computer  network, avoiding local buffer congestion and 
deadlocks. (We shall devote Section 11 to  the discussion of 
this form  of  flow  control.) 

2 )  Entry-to-Exit  Level: This level of flow control is gen- 
erally implemented as a  protocol between the source and 
destination  switch,  and has the purpose of preventing buffer 
congestion at  the  exit  switch (Section 111). 

3)Network Access  Level: The objective of this level is to 
throttle  external  inputs based on measurements of internal 
(as opposed  to  destination)  network congestion  (Section 

4) Transport Level; This is the level of flow control asso- 
ciated with  the  transport  protocol, i.e., the  protocol which 
provides for  the reliable delivery of  packets  on  the “virtual” 
connection  between  two  remote processes. Its main  purpose 
is to prevent  congestion of user buffers  at  the process level 
(i.e., outside  of  the  network) (Section V), 

?V). 

Some authors reserve the  term “flow control”  for  the 
transport level, and refer to  the  other  three levels of control 
as congestion control [34]. This  terminology is used to 
emphasize the physical distinction  between the first three 
levels, which are realized in the  communications  subnet 

.(and  therefore are the responsibility of the  network imple- 
menter) and the  fourth level, which is realized in the user 
devices (and therefore is the responsiblity of the  network 
customer). In this  paper, we have chosen to use the  term 
flow control  for all four levels. 

The design of an efficient  flow control strategy for  a packet 
network is a  complex task  in many  ways.’The  most critical 
issue is the  fact  that flow control is a multilayer distributed 
protocol involving several different levels. At each level, the 
flow control  implementation  must be consistent  and  compat- 
ible with other  protocol  functions existing at  the same level. 
Furthermore,  the  interactions  between .different levels must 
be cakfully  studied  in  order  to avoid duplication  of  functions 
on  one  hand,  and lack of  coordination  on  the  other. 

The purpose of this  paper is to provide a  taxonomy of 
flow control mechanisms based on  the above defined multi- 
level structure.  First, we review problems,  functions,  and 
performance  measures of flow control.  Then,  for  each level 
we survey the most  representative  flow control  ,techniques 
that have been proposed and/or  implemented, providing a 
performance  comparison among’techniques  at  the same level, 
and discussing the  interaction  between  techniques  at  different 
levels. Finally, we briefly mention some new flow control 
issues raised by novel computer  network  applications. . .  

11. FLOW CONTROL: PROBLEMS, FUNCTIONS, AND 
MEASURES 

Our overall problem is to identify mechanisms  which 
permit  efficient dynamic sharing of the pool of resources 
(channels, buffers,  and switching processors) in a  packet 
network. In this section, we first  describe and  illustrate  the 
congestion  problems caused by lack of  control.  Then we 
define the  functions  of flow control  and  the  different levels 
at which  these functions are implemented.  Finally, we intro- 
duce  performance measures for  the evaluation and  comparison 
of different  flow  control schemes. 

A. Loss of Efficiency 

The main cause of  throughput degradation  in a  packet 
network is the wastage of resources.  This  may happen  either 
because conflicting demands by two  or  more users make  the 
resource  unusable (e.g., collisions on  a  random access channel); 
or because a user acquires more resources than  strictly  needed, 
thus starving other users (e.g., a slow  sink fed  by  a fast  source 
may create a backlog of packets  within the  network which 
prevents other  traffic  from getting through).  The  two resources 
that are  most commonly “wasted”  in a packet network are 
communications  capacity and storage capacity. 

Buffe’r wastage is an  indirect consequence of  limited nodal 
storage: a given end-to-end packet  stream may be blocked 
at an intermediate  node along the  path because all of  the 
buffers have been “hogged” by ,other streams. This may 
happen even if channel bandwidth is plentiful  along the 
blocked stream path,  thus causing an unnecessary loss of 
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throughput.  The  source  of  this  throughput degradation is that 
some users unnecessarily monopolize (i.e., waste) the  buffers 
at  some congested node. 

A simple example of throughput degradation  caused by 
buffer  interference is shown in Fig. 2.  Two pairs of hosts, 
(A, A ‘ )  and (B,q B’), are engaged in data transmission through 
a single network  node. Access line speeds (in arbitrary units) 
are given in Fig. 2.  The  traffic  requirement  from  A  to  A’ 
is constant  and is equal t o  0.8 (measured  in the same units as 
the line  speed). The  requirement  from B to B‘  is vajable, 
and is  denoted by X. When X approaches 1, the  output  queue 
from  the switch to  host B’ grows indefinitely large filling up 
all the  buffers in the  switch.  Packets arriving when all the 
buffers are full are discarded, and are later  retransmitted by 
the source host (we refer to  this  model as the retransmit 
model). If we plot the  total  throughput, i.e., the sum  of 
(A, A’)  and (B. B’) delivered traffic as a  function  of X (as in 
the solid curve of Fig. 3), we note  that  for X = 1, the through: 
put experiences a  sharp  drop  from 1.8 to  1.1.  The drop is 
due to  the fact that  the switch  can handle  the  entire user 
demand = h + 0.8 for X, < 1; while for X 2 1, the  switch 
buffers  become  full, causing overflow. Consequently, large 
queues build up in both  the  A  and B hosts. With a heavy load, 
the  rate  of  packet transmissions  (and  retransmissions) from 
B is 10 times the rate from  A because of  the difference  in  line 
access speeds. Thus, packets from  B have a 10 times better 
chance  of  being accepted when a buffer  becomes free than 
packets from A, leading to  a 10 to 1 imbalance  in  effective 
throughput. Since the -(B, B‘) throughput is limited to  1, 
the (A,  A’) throughput is reduced to 0.1 (i.e., one  tenth of 
the AA’ throughput), yielding a  total  throughput = 1.1 for 
X >  1. 

In this  example, we have observed a decrease in useful 
throughput caused  by an increase o f  offered load beyond  the 
critical  system capacity. This throughput degradation is 
typical of congested systems,  and is often  taken as a  definition 
of congestion (i.e., a system is “congestion-prone’’ if an 
increment in offered  load causes a  reduction in throughput) 

In the previous example, we assumed that  dropped  packets 
would be retransmitted  from  the  host.  A similar analysis  can 
be carried out assuming that  dropped packets are lost (loss 
model). The  throughput versus offered  load  performance is 
similar to  that of the  retransmit  model,  although  the  drop is 
somewhat  smoother in this case (the dashed  curve of Fig. 3). 

Throughput degradation effects, caused by  inefficient 
allocation  (and  therefore wastage) of buffers are found also 
in multinode  networks as reported  by several studies [27],  
[ 131 , [I81 . To prevent this  type of degradation, proper 
buffer  allocation rules  are generally established at  each  node, 
as soon described. 

Another cause of throughput degradation is channel 
wastage. This  problem  manifests  itself very clearly  in multi- 
access channels (e.g., packet satellite,  or packet radio channels), 
when users transmit  packets  at  random times without prior 
coordination  (random access). A well-known  example is 
offered by the ALOHA channel [23]. Packets that collide 
are lost,  thus causing channel wastage and  consequently, 
throughput  degradation. Congestion  prevention in multi- 
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Fig. 3.  Throughput  degradation  of  system  of Fig. 2 due  to  buffer 
interference. 

access channels is discussed in [46] in this  TRANSACTIONS. 
Also, it is clear that unnecessary  retransmissions of  a  packet 
represent another  form of  channel wastage. Yet another 
manifestation is the use of unnecessarily long  paths in a  net- 
work (e.g., looping in routing algorithms). 

B. Unfairness 
Unfairness is a  natural  byproduct  of  uncontrolled  competi- 

tion.  Some users, because of  their relative position  in the  net- 
work or the particular  selection of  network  and  traffic param- 
eters, may succeed in capturing a larger share of resources 
than  others,  and  thus  enjoy preferential treatment. 

One example of unfairness has already  been given in Figs. 
2  and  3 where the (B-B’) flow is allowed to  exceed the (A- 
A’)  flow  by a  factor  of  ten.  Another obvious  example  of 
unfairness is offered by the single switch loss model in Fig. 4. 
The speed  of the  output  trunk is 1. Hosts A  and B are injecting 
data  into  the switch with rates 0.5 and X, respectively.  For 
fairness, the  output  trunk should be equally  shared  by the 
two  hosts. However, the loss model performance results  shown 
in Fig. 5 indicate  that  for large values of X, host  B  captures 
the  entire  output  trunk  bandwidth, reducing the  A  through- 
put  to  zero. As previously observed, for X > 0.5 host  B has a 
far  better chance to seize free  buffers  in the switch than 
host A. Specifically, the  ratio  of  A-packets  to  B-packets in 
the switch at heavy load is roughly  equal to  0.5/X. Thus, 
the  ratio of A-throughput  to  B-throughput is also 0.5/h, 
explaining the behavior  in Fig. 5 .  
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Fig. 4. Example  of  unfairness. 
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Fig. 5. Performance of system shown in Fig. 4. 

Cases of unfairness have been reported in many  multinode 
network  studies,  and several “fairness” techniques have been 
proposed.  Unfortunately,  the problem of fairness is consider- 
ably more difficult to deal with  than  the problem of  total 
throughput  degradation because a general,  unambiguous 
definition  of fairness is not always possible in a  distributed 
resource  sharing environment. 

C. Deadlocks 

A deadlock  condition manifests  itself by  a  (total or partial) 
network crash. Deadlocks often  occur because of  a cyclic 
wait of resources to become available. That is, one user is 
holding a  portion of the resources that  he  currently needs 
and is waiting for  another user to release the remaining re- 
sources necessary to complete his  task and this user is waiting 
for  yet  a  third  user,  etc.,  such  that  the sequence of “waiting” 
users closes into  a  cycle,  and  it is immediately seen that no 
user in the cycle can make any progress [3] .  Thus,  the 
throughput  for  this  subset  of users is reduced to zero. 

Deadlocks  are  likely to  occur in a  network when the 
offered  load  exceeds  network  capacity.  For  a simple example 
0f.a  deadlock, consider two switches, A and B, connected  by 
a  trunk carrying  heavy traffic in both  directions (see Fig. 6). 
Under the heavy traffic  assumption,  node A rapidly fills up 
with  packets  directed  to B ;  and vice versa, B fills up  with 
packets directed to A .  If  we assume that  dropped  packets 
are retransmitted,  then  each  node must hold  a  copy  of  each 
packet,  (and  therefore  a  buffer) until the  packet is accepted 
by  the  other  node. This  may  result in  an endless  wait  in  which 
a  node  holds all of  its  buffers  to  store  packets being trans- 
mitted  to  the  other  node,  and  keeps  retransmitting packets 
to  the  other  node waiting for  buffers to be  freed there. Con- 
sequently, na useful data are transferred  on  the  trunk.  It 
turns  out  that this type  of  deadlock  (known as direct  store- 
and-forward  deadlock [ 191 ) is relatively easy to prevent by 

Fig. 6 .  Deadlock  example. 

setting simple restrictions on buffer usage at  each  node.  A 
more  extensive discussion of deadlocks will be given in 
Section 11. 

It is important to point  out  that  buffer deadlocks are 
possible only  in networks which  retransmit dropped  packets, 
i.e., which save a  copy  of  a  packet  at  each  node while trans- 
mitting  the  packet to  the  next  node  on  the  path,  and  retrans- 
mit a  copy of the packet  in case of overflow (retransmit 
model). If dropped packets  are not  retransmitted (i.e., a loss 
model), the sending node is not required to save a  copy  of 
the packet until acceptance at  the  next  node,  thus removing 
a necessary condition  for deadlocks. Thus, lossy networks 
are deadlock  free; however, an  additional recovery  mechanism 
for  lost packets  must then be provided at  the  end-to-end 
level. 

D. Flow Control Functions 

Flow control may be defined as a  protocol (or  more gen- 
erally,  a  set of protocols), designed to  protect  the  network 
from problems  related to overload and speed  mismatches. 
Solutions  to  the  three problems just discussed (maintaining 
efficiency, fairness and  freedom  from  deadlock) are  accom- 
plished by  setting rules for  the  allocation  of  buffers  at  each 
node  and by properly regulating and (if necessary)  blocking 
the flow of packets internally in the  network as well as at 
network  entry  points.  Actually,  multiple levels of  flow  control 
are  generally implemented in a  network, as we shall see. 

Efficiency and congestion  prevention benefits of flow 
control do not  come  for free. In fact, flow control (as with 
any  other  form  of  control in a  distributed  network)  may 
require  some  exchange of  information  between  nodes to 
select the  control strategy and possibly,  some  exchange of 
commands  and parameter information to implement  that 
strategy. This exchange  translates into  channel, processor, and 
storage  overhead. Furthermore, flow control may  require 
the  dedication  of resources (e.g., buffers, bandwidth) to 
individual  users, or classes of users, thus reducing the  statistical 
benefits of complete resource sharing. Clearly, the  tradeoff 
between gain in efficiency  (due to controls)  and loss in.  ef- 
ficiency (due to limited sharing and overhead)  must be care- 
fully  considered in designing flow control strategies.  This 
tradeoff is illustrated by the curves in Fig. 7, showing the 
effective throughput as a  function of offered  load.  The ideal 
throughput curve corresponds to perfect control as it could 
be implemented by an ideal observer,  with complete  and 
instantaneous  network  status  information. Ideal throughput 
follows the  input  and increases linearly  until it reaches a 
horizontal  asymptote  corresponding  to  the  maximum  theo- 
retical network  throughput.  The  controlled  throughput 
curve is a typical curve that can be obtained  with  an  actual 
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Fig. 7. Flow control performance tradeoffs. 

control  procedure.  Throughput values are lower than with 
the ideal curve because of  imperfect  control  and  control 
overhead. The  uncontrolled curve follows the ideal curve for 
low offered  load;  for higher load,  it collapses to  a very low 
value of  throughput  and, possibly, to  a  deadlock. 

Clearly, controls  buy  safety  at high offered loads at  the 
expense  of  somewhat  reduced  efficiency. The  reduction in 
efficiency is measured in terms of  higher  delays (for light 
load)  and lower throughput  (at  saturation).  Furthermore, 
experience  shows that flow control procedures are quite 
difficult to design and ironically,  can themselves be the source 
of  deadlocks and degradations. In particular, when one  con- 
trols flow,  one places constraints on  the flow. If one  cannot 
meet  a  constraint,  then  the result is a  deadlock. Or, if one is 
slow in  meeting the  constraint,  the result is a  throughput 
degradation. 

E. Levels o f  Flow Control 

Flow control in a  packet  network can be best  described as 
a multilayered structure consisting  of several mechanisms 
operating  independently  at  different levels. Since flow control 
levels are closely related to (and sometimes  imbedded  in) 
protocol levels, it is helpful  for us to begin by  briefly re- 
viewing the  network  protocol  structure,  pointing to the flow 
control provisions existing at  each level [ 171 . The flow control 
level structure will then be defined  following the  protocol 
structure  model. 

Fig. 8 depicts the typical protocol layer architecture 
implemented in a packet network, using as a reference a 
network  path  connecting user devices called DTE’s (data 
terminating  equipment)  through  a  number of  intervening 
communications switches called DCE’s (data communications 
equipment). For the  user-to-network (i.e., DTE-to-DCE) 
interface,  a  standard set of  protocol levels is now being defined 
by IS0 and ANSI [9].  For  the  internode  protocols  within 
the  communications  subnetwork,  there is less emphasis on 
standardization since different  network  manufacturers  tend 
to  select different  solutions  to best exploit  their  equipment 
capabilities. In spite of  these  differences, it is still possible 
to  define a  set  of reference levels for  internal  network  proto- 
cols which closely parallel the DTE-DCE interface  protocol 
levels. 

r 

TRANSPORT LEVEL 
c 

t ENTRY TO EXIT LEVEL I 

DTE: Data Terminating Equipment (e.g., Host. Terminall 

DCE: Data Communications Equipment k g . .  Swtching Processor1 

Fig. 8. Network protocol levels. 

Starting  from  the  bottom of the  protocol  hierarchy, we 
have the physical  level which  has the  function of  activating 
and deactivating the electrical connection  between  the nodes. 
No flow control  functions are assigned to  this level. 

Above the physical level, we have the link level which 
serves . the  purpose of transporting packets reliably across 
individual physical links. One of the  functions of this  proto- 
col is related to flow control,  and consists of retransmitting 
packets that are dropped because of congestion at  the re- 
ceiving node. In some  protocols,  a congested receiver may 
stop  the sender by using appropriate  commands (e.g., RNR: 
receiver not  ready, in HDLC and SDLC; or, XOFF in  asyn- 
chronous  terminal  connections), As mentioned  before, we find 
two  different  types of  links in the  network:  the  internal 
(or node-to-node) link and  the  network access link. Cor- 
respondingly, we have (at the same level in the  protocol 
hierarchy)  two  types of link  protocol:  the network access 
protocol and  the node-to-node protocol. Typical  examples 
of  link protocol  implementation are HDLC, SDLC, and 
X.25 level 2 (which is a subset of HDLC). 

Above the link level, we have the packet level protocol, 
which  defines the procedures for establishing end-to-end user 
connections  through  the  network,  and specifies the  format 
of the  control  information used to  route packets to their 
destinations.  Two  different versions of packet protocol  exist: 
the virtual circuit protocol  and  the datagram protocol. 

When the virtual  circuit (VC) implementation is used, a 
“virtual”  circuit connection must be set up between a pair 
of users (or processes) wishing to  communicate with  each 
other before the  data transfer  can be started. The  establish- 
ment of  this  circuit  implies dedication  of resources of one 
form or another along the  network  path.  A typical  virtual 
circuit implementation, used in Transpac [7] ,  assigns a fixed 
path  to each connection  at  setup  time.  A virtual  circuit ID 
number,  stamped in the packet header, uniquely  identifies 
the packets  belonging to  a  connection,  and is used to  route 
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packets to  the  destination using routing maps  implemented 
at each intermediate node at set  up time. From the flow 
control  point  of view, the VC protocol  has  the distinguishing 
feature of permitting selective flow control on each individual 
user connection. This selective flow control can be applied at 
the  internode level as well as at  the.  network access level. 
Since a  fixed path is maintained  for  the  entire user session, 
the selective flow control can also be extended  from  entry 
to exit  switch  and if so desired, even from  entry  to  exit DTE. 

As opposed  to  the virtual  circuit implementation,  the 
datagram implementation does not require any circuit  set- 
up before  transmission. Each packet is independently  sub- 
mitted  to  the  network,  and explicitly  carries in its  header all 
the  information required for  its delivery to destination [34]. 
Selective flow control, on a connection  by  connection basis, 
is not available in the datagram implementation since the 
packet  header does not  contain specific connection  informa- 
tion (it  merely  posts source  and  destination DTE addresses). 

Above the  packet  protocol, we find (within the  subnet 
only)  the entry-to-exit (ETE)  protocol.  The objective of this 
protocol is the reliable transport  of single and  multipacket 
messages from  network  entry  to  network  exit  node.  Important 
functions  of this protocol which  are  related to flow control 
are  the reassembly of multipacket messages at  the  exit  node 
and  the regulation of  input  traffic using buffer  allocation  and 
windowing techniques. Some network  implementations  do 
not have the ETE level of  protocol. In this case, the  ETE 
functions are  relegated to higher level protocols. 

The highest level of network  protocol which  has impact 
on flow control is the transport protocol. This protocol 
provides for  the reliable delivery of packets on  the “Virtual” 
connection  between  two  remote processes. One of the flow 
control  related  functions  of this protocol is the  protection 
of destination buffers. The goal is to regulate the flow so as 
to make  the most efficient use of  network resources, while 
avoiding buffer overflow at  the  destination. “Window” and 
“credit” schemes are generally  used for  this purpose. 

The above network  protocol review has  identified various 
flow control  functions  and capabilities  built into  different 
levels of  protocols,  and  has  brought to  our  attention  the  fact 
that each protocol level has  its  own  distinct flow control 
responsibilities. It is now clear that  the classification into  the 
four  types of flow control procedures mentioned earlier 
parallels the classification of  network  protocols. Recall that 
there is: 

1) hop  (or  node-to-node) level (Section 11), 
2) network access level (Section III), 
3) entry-to-exit level (Section IV), and 
4) transport level (Section V). 
The diagram in Fig. 9 illustrates  these levels of  flow  control 

for a typical  network  path. A comparison  with Fig. 8 reveals 
the close relationship between flow control  and  protocol 
level structures. 

Unfortunately,  the  true system  behavior is far  more com- 
plex than  our models and classifications attempt (or can 
afford) to portray.  Therefore,  actual  networks may not always 
mechanize all of  the above four levels of flow control  with 
distinct procedures.  It is quite possible, for  example,  for a 

TRANSPORT LEVEL * c 

ENTRY TO  EXIT LEVEL 

Fig. 9. Flow control levels. 

single flow control mechanism to combine  two  or  more levels 
of flow control. On the  othei  hand,  it is possible that one- or 
more levels of flow control may be missing in  the  network 
implementation.  The  matrix in Fig. 10 provides a  synopsis 
of  the main network  implementations  and flow control 
schemes that will be surveyed  in  this  paper. It is seen that 
some of  the schemes cover more  than  one level. 

F. Perfomance Measures 

We wish to define  a quantitative measure of flow control 
performance  for various reasons. First, we wish to be  able to 
“tune”  the parameters of a given flow control scheme so as 
to optimize a well defined performance  criterion.  Second, we 
wish to carefully weigh performance  benefits against over- 
head introduced  by flow control.  Third, we are  interested  in 
comparing the performance of alternative  flow control 
schemes  in quantitative terms. 

Throughput  efficiency (where throughput is expressed  in 
packets/s) is probably  the most common measure of flow 
control  performance.  Total effective throughput (sum of all 
the individual contributions) is evaluated as a function of 
offered load.  This representation is particularly useful to 
determine  the critical load in an  uncontrolled system and to 
assess the  throughput efficiency of a controlled  network  at 
heavy load. 

Another  common measure is the combined  delay and 
throughput perfomance. The  delay-throughput profile  allows 
us to determine  the delay  overhead introduced  by  the  controls 
(which the  throughput versus offered load curve did not 
display). In general, it gives  us a more  complete picture of 
system performance  than does throughput behavior alone. 
In fact, a  system may be designed to deliver high through- 
put  at heavy load,  and  yet  it may  experience intolerable 
delays at light load. 

A  more compact measure of combined  throughput  and 
delay  performance is offered by the  concept  of “power” 
[ 131 , [24] . The simplest definition of power is the  ratio  of 
throughput over delay;  it is, therefore, a function  of  the 
offered load. In fact,  it defines the  “knee” of the  through- 
put-delay profile as that  point where  power is maximized, and 
as shown  in Fig. 11 this  knee  occurs  where  a ray out  of  the 
origin is tangent to the performance  profile [24]. A very 
nice characterization of this  maximum  power point is such 
that  it occurs when the average buffer  occupancy at each 



GERLA  AND KLEINROCK: FLOW CONTROL 

COL RFNM NCP 

NETW. ACC. 

ENTRY-EXIT 

TRANSP. 

TRANSPAC 

SDLC VR SESSION 
PACING PACING 

NOT DEFINED 

GMDNET 

I-C SEP 

NOT DEFINED 

Fig. 10. Classification of actual flow control  implementations. 
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Fig. 11. Delay,  throughput,  and  power. 

intermediate  node on the  path is unity. In [25],  it was shown 
that blocking due  to loss systems  could easily be included in 
a  more general definition  of power  (by  multiplying the simple 
definition by one minus the blocking probability);  this leads 
to  system designs whose optimum  operating  point is easily 
found and  which corresponds  to  the  operating  point  one 
would  intuitively  choose. Much more general definitions  of 
power are also studied in [25]. 

In some important cases, power is maximized for  a value 
of  offered  load which is approxjmately half of  the  saturation 
load [24].  The  maximum’ power value reflects both delay 
performance (at  light load)  and  throughput  performance  (at 
heavy load)  and  therefore, represents a good figure o f  merit 
of  the flow control  implementation. 

111. HOP LEVEL FLOW CONTROL 

A .  Objective 

The objective  of hop level flow control is to  prevent store- 
and-forward  buffer congestion and  its consequences, namely, 
throughput degradation and deadlocks. Hop level flow control 
operates in a local, “myopic” way in that  it  monitors local 
queues and  buffer occupancies at each node  and rejects store- 
and-forward  (S/F)  traffic arriving at  the  node when  some 
predefined  thresholds (e.g., maximum  queue  limits) are 
exceeded. The function  of checking buffer  thresholds  and 
discarding  (and later  retransmitting) packets on  a  network 
link is often carried out by the  data  link  control  protocol. 

This locality  of the  control does not  preclude,  however, 
possible end-to-end repercussions  of hop level flow control 
due  to  the “backpressure” effect [i.e., the propagation of 
buffer  threshold  conditions  from  the congested node upstream 
to  the  traffic  source(s)]. In fact,  the backpressure property 
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is effi,cientlV exploited in several network  implementations 
(as soon described). 

Store-and-forward  congestion  has two unpleasant coil- 
sequences: throughput degradation and deadlocks. These 
conditions were described  in Sections 11-A and 11-C, respec- 
tively. In the  remainder of  this  section, we survey and compare 
a  number  of  hop level flow control  procedures, specifically 
designed to eliminate  these  problems. 

B, Classification of Hop  Level  Control  Schemes 
The  hop level flow control scheme can play the role of 

arbitrator  between various classes of traffic competing  for  a 
common  buffer  pool in each  node.  A  fundamental  distinction 
between different flow control schemes is based on the way 
the  traffic  entering  a  node is subdivided into classes. 

One family  of hop flow control schemes distinguishes 
incoming  packets based on  the  output  queue  they must be 
placed into.  Thus,  the  number of classes is equal to the 
number  of  the  output  queues;  the flow control scheme super- 
vises the allocation of  store-and-forward buffers to  the  output 
queues. Some limit  (fixed or dynamically  adjustable) is de- 
fined for  each  queue; packets beyond  this limit  are  discarded. 
Hence, the  name channel queue  limit schemes is generally 
given to  such mechanisms (see Section 111-C). 

Another  important family of hop flow control schemes 
distinguishes incoming  packets based on  the  “hop  count” 
(i.e., the  number of network links that  they have so far 
traversed).  This implies that each node keeps track  of N - 1 
classes of traffic, where N -  1 = number of different  hop  counts, 
and N = the number of nodes in the  network  (note  that if 
loopless routing is assumed, no  network  path can  exceed 
N - 1 loops  in length),  and  allocates a (fixed or adjustable) num- 
ber  of  buffers  to  each class. We will refer to  this family  of 
schemes as buffer class schemes (see Section 111-D). 

A third family distinguishes packets based on  the virtual 
circuit (Le., end-to-end’session)  they belong to. This type  of 
scheme  requires, of  course,  a virtual  circuit network  architec- 
ture;  it assumes that each node can distinguish incoming 
packets based on the virtual  circuit they belong to  and  keep 
track of a number  of classes equal  to  the  number of  virtual 
circuits that  currently traverse it. Note that  the  number of 
classes varies here with time (since virtual  circuits  are dynam- 
ically created  and realeased), as distinct  from  the previously 
mentioned schemes  where the  number of classes is merely a 
function of the  topology.  Upon  creation,  a virtual  circuit is 
allocated a set of buffers  (fixed or variable) ‘at each node. 
When this set is used up,  no  further  traffic is accepted  from 
that virtual circuit. We will refer to  this family of schemes as 
virtual circuit hop level schemes (see Section 111-E). 

Many other  traffic subdivisions are possible:, for  example, 
a  traffic class may be associated with each traffic  source;  with 
each traffic  destination; or with  each source-destination 
node pair. Indeed, these  are all legitimate and, in many re- 
spects, well justified  choices for a  link level flow control 
scheme. However, we  will restrict our  study to the  three 
schemes just  mentioned, since these are the only  schemes 
which have been  extensively analyzed in the published litera- 
ture  and  implemented in real networks. 
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Apart from traffic class distinctions,  another parameter 
that is often used to characterize and classify hop flow control 
schemes is the degree of dynamic  sharing of the  store-and- 
forward  buffers.  Here, several possibilities exist, namely: 

1)  fixed,  uniform partitioning of buffers  among buffer 
classes (no sharing); 

2) buffer  partitioning  proportional to traffic in each class 
(no  sharing); 

3) overselling (i.e., the sum of the buffer  limits, one  for 
each class, is larger than  the  total  buffer pool); and 

4) dynamic  adjustment  of buffer limits based on relative 
traffic  fluctuations. 

The following  sections discuss each hop flow control 
class in more detail. 

C. Channel  Queue  Limit  Flow  Control 

In the channel queue limit (CQL) scheme,  the  traffic 
classes correspond  to  the channel output queues, and  there 
are restrictions  on  the  number  of  buffers  each class can seize. 
We may  define the following versions of  the  CQL scheme 

I )  Complete  Partitioning (CP)-Letting N = number of 
output  queues,  and n j  = number of packets on  the  ith  queue 
and B = buffer size, we have the following constraint: 

P O I .  

B 
O<ni <-, Vi.  

N 

2)Sharing with  Maximum  Queues (SMXQ)-Let b,,, 
be the  maximum  queue size allowed (where, b,,, > B/N); we 
have the following constraints: 

O<ni<b,,,, V i  

ni<B. 
i 

3)  Sharing with  Minimum Allocation (SMA)-Let b,i, be 
the  minimum  buffer allocation  which is guaranteed to each 
queue  (typically, b,i, < B/N). The  constraint  then becomes 

1 max (0, n i -bmin)<  B--Nb,i,. 
I 

4 )  Sharing with  Minimum Allocation  and Maximum 
Queue-This  scheme  combines 2)  and  3) in that  it provides for 
a minimum buffer  guarantee  and  a  maximum  buffer  allocation 
for  each  queue  at  the same time. 

The above options assume that  the buffer  limit  parameters 
are fixed  in time  and are the same for all queues.  Additional 
flexibility may be introduced in these  schemes by allowing 
the buffer parameters to change dynamically  in time  and  from 
queue  to  queue based on  traffic  fluctuations. 

Having defined  a  number of CQL flow  control  options, 
we now proceed to  show  that this form of flow control can 
eliminate the performance  degradation and  deadlock  effects 
mentioned in Section 11. Referring  first to Fig. 2, we note 
that in the presence of  CQL flow control,  the  traffic  compo- 
nent (B,  B’) will no longer  be permitted to seize all the  buffers 

in the switch. Therefore,  traffic can now flow  freely from A to 
A’ ,  and  the  throughput degradation effect is removed. Simi- 
larly, the deadlock condition  depicted  in Figs. 6 and 7 cannot 
occur since the  buffers in node  A  cannot be taken over 
completely  by the channel (A, B )  queue.  Therefore, some 
buffers in A will always be available to receive packets from 
node B. 

Some  form or another of CQL flow control is found in 
every network  implementation.  The ARPANET IMP (interface 
message processor) has a shared  buffer  pool with minimum 
allocation  and  maximum  limit for each queue, as shown in 
Fig. 12 [30] . Of the  total  buffer pool (typically, 40 buffers), 
two buffers for  input and one buffer for  output are per- 
manently allocated to each internode channel.  Similarly, 
ten buffers are permanently  dedicated to  the reassembly of 
messages directed to  the hosts. The remaining buffers are 
shared among  output queues and  the reassembly function, 
with  the following  restrictions: reassembly buffers <20, 
output  queue <8, the  total  store-and-forward  buffers  <20. 

Next we proceed to  the evaluation and  comparison of 
CQL implementations, and  briefly review the main results 
available in the published literature [ 181 , [20] . We first report 
on some throughput degradation conditions observed in 
absence of flow control. Fig. 13  from [ 181 shows through- 
put performance as a  function  of  link  load  for  a variety of 
buffer  control policies. The curve labeled “unrestricted 
sharing” corresponds  to  a system without flow control. We 
notice  that,  for increasing input  load,  the  throughput of the 
uncontrolled system  reaches a peak and  then degrades asymp 
totically to  unity. This behavior confirms the  throughput 
degradation predictions made in  Section 11. 

Throughput degradation is easily corrected  with  the  intro- 
duction of CQL  flow control, as shown  by the remaining 
curves in Fig. 13.  The  “no sharing”  system (i.e., complete 
partitioning  of  the  buffer pool among  the  outgoing queues) 
is, as expected,  the  most conservative and  throughputwise 
least  efficient  scheme. The best  scheme is the  “optimal 
sharing” scheme, which corresponds  to  optimally reselecting 
a new buffer limit for each level of traffic (i.e., dynamic 
SMXQ). A  heuristic  approximation  of  the  optimal scheme is 
offered by the “square root  scheme,”  a  load invariant  scheme 
with fixed buffer limit =BIN, where B = total  number of 
buffers and N = number  of  output channels. The square root 
scheme is simpler to  implement  than  the  optimal scheme 
since it does not  depend  on  traffic  load  and,  therefore,  does 
not require the  reoptimization  of  the  buffer limit values as 
a  function  of  traffic  pattern changes, and  yet,  it was shown to  
be  practically as efficient as the  optimal sharing for  a  number 
of cases [ 181 . 

Kamoun  [20] used a similar switch  model to investigate 
the sharing with minimum  allocation (SMA) scheme. The 
results, obtained in a balanced load  environment,  show no  
substantial difference  between SMXQ and SMA; in fact, 
neither scheme is consistently better over the  entire range 
of  offered loads. We conjecture, however, that  with strongly 
unbalanced traffic SMA would exhibit  better “fairness” since 
SMA guarantees  minimum throughput  (with  low delay) for 
each output channel even when the shared portion  of  the 
buffer pool is captured by a few heavily loaded  queues. 
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Fig. 12. Buffer  allocation  in  Arpanet IMP (1972 version). 
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Fig. 13.  Single  switch  buffer  and  allocation  model.  Throughput 
versus  load  behavior  for  various  buffer  management  schemes  (un- 
balanced  load  pattern). 

Summarizing  various  published  results, we may state  that 
CQL  flow control is necessary to avoid throughput degrada- 
tion, unfairness, and direct store-and-forward deadlocks. 
Furthermore,  it seems that almost any  form  of CQL  imple- 
mentation will provide the minimum  required protection. 
The safest scheme (for fairness reasons) seems to be the 
combination  of SMXQ and SMA, which  imposes a maximum 
and minimum  limit on each queue (incidentally,  this was the 
scheme used in ARPANET). 

D. Structured  Buffer Pool (SBP) Flow Control 
We have shown in the previous section that CQL  flow 

control eliminates  direct store-and-forward deadlocks. How- 
ever, there is another,  more general form  of  deadlock which 
can arise in packet networks,  namely, indirect store-and- 
forward  deadlocks [19]. Fig. 14 illustrates a typical indirect 
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store-and-forward deadlock  situation. Suppose that unfavor- 
able traffic  conditions in the ring topology  shown in Fig. 14  
cause .each queue  to be filled with Q,,, packets, where 
Q,,, is the limit  imposed by  the CQL strategy.  Furthermore, 
assume that  the packets at  each  node are directed to a  node 
two or Gbre  hops away (e.g.,  all packets  queued on  link 
(A, B )  are  directed to C). In these conditions,  no traffic can 
move in the  network since all the queues are full. Thus, we 
have a  deadlock even  if the  network is equipped  with CQL 
flow control (which is known  to prevent  direct store-and- 
forward deadlocks)! 

Prevention of indirect  store-and-forward  deadlocks is 
obtained  with  the  “structured buffer pool” strategy  proposed 
by  Raubold et al. [37]. In this strategy, packets arriving at 
each node are divided into classes according to  the  number 
of hops  they have covered. For  example, packets entering  a 
node  from  the  host belong to class 0 of.that  node, since they 
have not  yet covered any  hops.  The highest class Hmax cor- 
responds to packets that have traversed H,,, hops, where 
H,,, is the maximum path  length in the  network (a function 
of the topology and  the  routing algorithm).  The highest 
class H,,, also includes all the packets that have reached 
their destinations  and  are therefore being reassembled into 
messages before delivery to  the hosts. The nodal buffer 
organization  reflects  this class structure as shown in Fig. 15. 
Each packet class has the right to use a well-defined set of 
buffers. Class 0 can access only  the  buffers available in set 0. 
Buffer set 0 is large enough to store  the largest size message 
entering  the  network. Class i + 1 can use all the buffers 
available to class i ,  plus one  additional  buffer. Finally, class 
Hmax can access all the  buffers available to class Hmax-l, 
plus a  number of buffers sufficient to reassemble the largest 
message to be delivered to  any  destination (this provision is 
necessary, although  not  sufficient,  to avoid “reassembly 
deadlocks,” as will be shown in  Section IV). 

Under normal traffic conditions,  only set 0 buffers are 
used. When the load increases beyond nominal levels, buffers 
fill up progressively from level 0 to level H,,,. When at  a 
given node  the buffers at levels are full, arriving packets 
which have covered <i hops are discarded. Thus, in case of 
congestion,  “junior” packets are dropped in the  attempt 
to carry  “senior”  packets to their  destination. This is a de- 
sirable property, since senior  packets correspond  to  a higher 
network resource  investment. 

It can easily be shown  that this  strategy  eliminates  dead- 
locks of both  the direct and indirect type [37]. To prove 
this, we consider the “resource  graph” [3] associated with 
the packet  switch network. In this  graph, there is an arc 
associated  with  each  packet in the  network.  The arc  originates 
from  the  buffer  currently occupied  by the packet and  termi- 
nates in the  (currently unavailable, but awaited) buffer in the 
next  node  on  the  path.  A  deadlock occurs if and only if there 
is a cycle in the graph, i.e., there is a chain of arcs which 
starts  from one buffer,  and  terminates  at  the same buffer. 
The  existence of cycles can easily be recognized in  the  dead- 
lock  situations  depicted in Figs. 6 and 14. 

With the  structured buffer pool, however, no cycle can 
occur in the resource  graph since each arc  starts  from  a  buffer 
of class i and  points  to  a  buffer of class i + 1 (recall that  a 
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Fig. 15. Structured  buffer  pool. 

packet gains seniority  at each hop; an illustration of  this 
property is shown in Fig. 16. Thus,  both  direct  and  indirect 
store-and-forward  deadlocks are prevented. 

The SBP method was developed  by the GMD group in 
Darmstadt,  Germany,  for  implementation in GMDNET, an 
experimental  packet  switch  iletwork [37].  Before implementa- 
tion,  an extensive simulation  effort was carried out  to verify 
and evaluate the  performance  of all the  network  protocols, 
and  of  the SBP procedure in  particular [13]. Early simulation 
results  showed that  the  proposed flow control scheme was 
effective in eliminating deadlocks,  but was not successful 
in  preventing throughput  degradation when the  offered  load 
exceeded  the critical threshold (some SBP simulation  experi- 
ments  with typical packet switch network topologies  showed 
that  the  throughput in heavy load  conditions was four  to 
five times  lower than  the  maximum  throughput). 

SINK B 

P 

1 

Fig. 16: . Access to  buffer classes. Example  for  two  data  streams. 
Dotted  area:  buffers  available  for  stream  A;  hatched  area:  buffers 
available  for  stream B. 

To correct  the loss of  throughput efficiency under heavy 
loads,  additional  constraints were imposed  on  the  number  of 
buffers that each traffic class could seize. The  most  dramatic: 
improvement was obtained  by limiting the  number  of class 0 
buffers  that couid be seized by input packets (i.e., packets 
entering  the  network  from  external sources). In the absence 
of this  constraint,  input packets had  the  tendency  to  monop- 
olize all class 0 buffers, leaving only  a  “thin”  buffer  layer  for 
the  transit  traffic  to circulate. The  control of input  traffic, 
known as “input flow control” in GMDNET is a  form of 
network access flow control  and will be discussed more 
extensively  in Section V. 

Additional  improvements in the SBP scheme were obtained 
in the case of datagram networks,  by  setting  a specific buffer 
size constraint L(i)  on each class i [13]. (In other  words, 
instead of having a nested buffer  pool  in which class i can 
access all buffers available to class i - 1, plus one  buffer, 
a  different  constraint is set  on  each class). The constraint 
L(i)  was dynamically adjusted to  adapt  to  the relative demands 
of the various classes. It is interesting  to  note  that  the  dead- 
lock prevention property is not affected by dynamic changes 
in buffer class size (as long as at least one  buffer is dedicated 
to  each class at all times). 

E. Virtual Circuit (Hop Level) Flow Control 

We recall that packet  switch networks can be subdivided 
into  two broad classes: datagram (DG) networks  and virtual 
circuit (VC) networks. In DG networks, each packet in a user 
session is carried through  the  network  independently  of  the 
other packets in the same session; that is,  packets  in the same 
session may follow different  routes,  and may be delivered out 
of sequence to  the  destination. In VC networks,  a physical 
network  path is set  up  for each user session and is released 
when the session is terminated. Packets  follow the preestab- 
lished path in sequence.  Sequencing  and error  control are 
provided at each step  along  the  path. 
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The previously mentioned flow control schemes, namely Tymnet is probably the earliest VC network developed 
CQL  and SBP, are  applicable to  both DG and VC nets. In [39]. As distinct  from most VC networks,  Tymnet uses a 
addition, VC nets  permit  the application of selective flow’ “composite”  packet internode  protocol. This means that 
control to  each individual VC stream (VC flow  control).  data from  different VC’s traveling on  the same trunk can be 
There  are two  forms  of VC flow control: packed in the same envelope, for  the purpose of  link over- 

1) hop level (or stepwise) VC flow control, which  controls  head reduction.  Tymnet is a  character-oriented  network in 
VC flow at  each  hop along the  path, and is designed to,avoid the Sense that  data flows on  the virtual  circuit in  the  form  of 
S/F buffer  congestion;  and  characters,  rather  than packets (i.e., characters are assembled 

2) source-sink (or  end-to-end) VC flow control, whose into packets at  the  entry  node,  and are then disassembled at 
function  it.  is‘to adjust  source rate to sink  rate SO as to maxi- the  exit node).  The character-oriented  nature of Tymnet 
mize VC throughput,  yet avoiding sink  buffer congestion. ,- implies that VC-HL buffer allocation is based on character 

(VC-HL) flow control; we discuss end-to-end VC flow control “*’ In Tymnet  [39],  a  throughput limit is computed  for  each 
In this  section we  will mainly  deal  with VC hop level.“ (rather than  packet)  counts. 

in  more  detail  in Section IV. 
The basic principle of  operation  of  the VC-HL scheme 

consists of  setting  a limit M on the maximum number  of 
packets for each VC stream that can be in transit  at each 
intermediate  node.  The limit M may be fixed at VC setup 
time,  or  may be dynamically adjusted, based on  load  fluctua- 
tions. The buffer  limit M is enforced  at  each  hop by the VC- 
HL  protocol, which regulates the issue of transmission 
“permits”  and discards  packets based on  buffer  occupancy. 

The advantage of VC-HL (over CQL and SBP) is to provide 
a  more efficient and  prompt recovery from congestion  by 
selectively slowing down  the VC’s directly  feeding into  the 
congested  area. By virtue of backpressure, the  control  then 
propagates to all the sources that are contributing  to  the 
congestion,  and reduces  (or stops)  their  inputs, leaving the 
other  traffic sources undisturbed. Without VC-HL flow control, 
the congestion  would  spread  gradually to a larger portion  of 
the  network, blocking traffic sources that were not directly 
responsible for  the original congestion,  and causing unneces- 
sary throughput degradation and unfairness. 

As in the case of CQL  and SBP schemes,  various buffer 
sharing policies can be proposed. At one  extreme, M buffers 
can be dedicated to each VC at  setup  time;  at  the  other ex- 
treme, buffers may be allocated, on demand,  from  a  common 
pool (complete sharing). It is easily seen that buffer dedication 
can lead to  extraordinary storage  overhead, since there is, 
generally, no practical upper  bound  on  the  number  of VC’s 
that can simultaneously  exist  in a  network;  furthermore,  the 
traffic  on  each VC is generally bursty, leading to low utiliza- 
tion  of  the reserved buffers. For these  reasons, most  of  the 
implementations  employ  dynamic  buffer sharing. 

The shared versus dedicated  buffer policy also has an 
impact on the  deadlock prevention properties of the VC-HL 
scheme. With buffer dedication,  the VC-HL scheme  becomes 
deadlock free.  This can easily be deduced  by considering the 
resource  graph and recognizing that  the graph cannot  contain 
loops, since virtual  circuits are loopless  by construction. 
(For  deadlock  freedom,  it actually  suffices that  at least one 
buffer be reserved for each  virtual  circuit). If,  on  the  other 
hand,  no  buffer reservations  are  made and  buffers are  allocated 
strictly  on  demand, deadlocks  may occur unless additional 
protection (e.g., the SBP scheme) is implemented. 

In the following, we briefly  describe three  different versions 
of VC-HL flow control  implemented in  existing networks, 
and  report  on some performance results. 

VC at  setup  time according to terminal speed,  and is en- 
forced all along the  network  path.  Throughput  control is 
obtained by assigning a maximum  buffer  limit  (per VC) at 
each, .intermediate  node  and by  controlling the issue of trans- 
mission permits from  node  to  node based on the  current 
buffer  allocation. Periodically (every half  second),  each node 
sends a backpressure  vector to  its neighbors, containing  one 
bit for each  virtual  circuit that traverses it. If the  number  of 
currently  buffered characters  for a given VC exceeds the 
maximum  allocation (e.g., for low speed  terminals-10 to  30 
cps-the allocation is 32  characters), the backpressure  bit is 
set to zero; otherwise the  bit is set to  one. On the  transmitting 
side,  each VC is associated with  a  counter which is initialized 
to  the maximum  buffer  limit and is decremented by one  for 
each character  transmitted. Transmission stops on a particular 
VC when the corresponding counter is reduced to zero.  Upon 
reception of a backpressure bit = 1, the  counter is reset to 
its initial value and transmission can resume. 

The effect of backpressure from  an individual hop back 
along the VC in Tymnet  constitutes  a good example of  the 
“hybrid”  character  of  many practical flow control imple- 
mentations, since we see here a  mixture  of  hop level and 
transport level flow control. This was pointed  out earlier in 
connection  with Fig. 10,  and we shall encounter  other  ex- 
amples as  we proceed. 

Transpac, the  French public data  network, is a VC net- 
work which uses X.25 as an internode  protocol [42]. One of 
the distinguishing features of Transpac is the use of the 
throughput class concept in X.25 for  internal flow and  con- 
gestion control. Each VC  call request carries a  throughput 
class declaration  which  corresponds to  the maximum (in- 
stantaneous)  data  rate  that  the user will ever attempt  to 
present to  that VC. Each node keeps track  of  the aggregate 
declared throughput (which  represents the worst case situa- 
tion),  and  at  the same time,  monitors actual throughput 
(typically, much lower than  the declared throughput)  and 
average buffer utilization. Based on the  ratio  of actual to 
declared throughput,  the  node may decide to ouerselZ capacity, 
i.e., it will attempt  to carry a declared throughput volume 
higher than  trunk  capacity. Clearly, overselling implies that 
input rates  may temporarily exceed trunk capacities, so that 
the  network must be prepared to exercise flow control. 
Packet  buffers are dynamically  allocated to VC’s based on 
demand (complete sharing), but  thresholds are set on individual 
VC allocations  as well as on overall buffer pool  utilization. 
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Of  particular interest is the  impact  of overall buffer pool 
thresholds on VC-HL. Three  threshold levels [So, S1, and 
SZ (where SO < S1 < S,)] are defined and are used in the 
following way: 

1) S o :  do  not  accept new VC call requests; 
2) SI : slow down  the flow on current VC’s (by  delaying 

3) Sz : selectively disconnect  existing VC’s. 
The threshold levels So, SI, and S2 are dynamically 

evaluated as a  function of declared throughput, measured 
throughput  and  current  buffer  utilization. 

Another  example  of  a VC network is offered by GMDNET 
[13]. As we mentioned  before, GMDNET applies SBP flow 
control. In addition,  it applies I-control (individual control) 
on  each virtual circuit.  I-control consists of  two  components: 
end-to-end flow control  and  hop level flow control.  End-to- 
end  and  hop level flow control are implemented using variable 
size windows PULE and  PULL, respectively (PUL = packet 
underway limit). The window is defined as the maximum 
number  of  packets  that  a sender is allowed to transmit  before 
receiving an ACK, or permit [ 5 ] .  The windows PULE and 
PULL are dynamically adjusted based on  sink congestion  and 
intermediate  node  congestion, respectively; their values may 
vary within  predefined ranges (1 < PULE < WE; 1 < PULL < 
W L )  [37] , [13] . The  buffer  pool is completely shareable, 
without specific  reservations for individual VC’s. 

Simulation results on the performance of the  I-control 
scheme lead to  the following important conclusions. 

1)  I-control alone cannot prevent throughput  degradation, 
unfairness, and deadlocks.  Experimental  results  clearly  show 
that  an  I-controlled  network  without SBP becomes  deadlocked 
immediately  after  the applied load exceeds the critical value 
(this  confirms our prediction  that VC flow control  without 
specific buffer reservations for individual VC’s cannot prevent 
deadlocks). 
2) The  end-to-end  component of I-control is very effective 

in  preventing network congestion in the case of source  rates 
exceeding  sink  rates.  Without I-control (i.e., the SBP control 
alone), a five-fold throughput degradation was observed in a 
typical network  experiment. 

the  return  of ACK’s at  the VC level); and 

IV. ENTRY-TO-EXIT FLOW CONTROL 

The main objective of the  entry-to-exit  (ETE) flow control 
is to prevent buffer congestion at  the  exit  node  due  to  the 
fact  that  remote sources  are  sending traffic  at  a higher  rate 
than can be accepted by the  hosts (or  terminals)  fed by  the 
exit  node.  The cause of the  bottleneck could be  either  the 
overload of  the local lines connecting  the  exit  node  to  the 
hosts, or the slow acceptance  rate of the  hosts.  The problem 
of congestion  prevention at  the  exit  node becomes  more 
complex when  this node must also reassemble packets into 
messages, and/or resequence messages before delivery to  the 
host. In fact, reassembly and resequence  deadlocks  may occur, 
which  require special prevention  measures. 

In order  to  understand  how reassembly deadlocks can be 
generated,  let us cortsider the network  path  shown in Fig. 

NODE 1 NODE 2 NODE 3 bOST 1 

- A,- A ,  A, 

Fig. 17. Reassembly buffer deadlock. 

HOST 2 NODE 1 NODE 2 NODE 3 nos1 1 

Fig. 18. Resequence  deadlock. 

17, where three  store-and-forward  nodes (node 1,  node 2, and 
node  3, respectively) relay traffic  directed to host 1. In the 
situation  depicted in Fig. 17, three multipacket messages 
A ,  B, and C are in transit towards  host  1. Without loss of 
generality we assume that  the message size is +I packets  and 
that 4 buffers are dedicated  to messages being assembled at 
a  node;  furthermore,  a channel  queue  limit Q,,, = 4 is set 
on each trunk  queue,  for  hop level flow control. We note 
from Figure 17  that message A (which  has siezed all four 
reassembly buffers at  node 3) cannot be delivered to  the 
host since packet A ,  is missing. Packet A z ,  on  the  other 
hand,  cannot be forwarded to node 2 since the  queue  at 
node 2 is full. The  node 2 queue, in turn,  cannot advance 
until reassembly space  becomes available in node 3 for B 
or C messages. Deadlock! 

A very similar order of events leads to resequence  dead- 
locks as shown  in Fig. 18. Assume that  a sequence of single 
packet messages A ,  B, K originating from  host 2 and 
directed to  host  1 is traveling through  a  three-node  network. 
If messages must be delivered in  sequence, messages B, C, 
D, E in node  3  cannot be transmitted,  to  host 1 until mes- 
sage A is received at node 3. However, due  to  store-and- 
forward buffer unavailability in node 2, message A cannot 
reach node  3. Deadlock! 

Various  schemes can be used to prevent  these types of 
deadlocks. In the ARPANET, for  example, reassembly dead- 
locks are avoided by requiring a reassembly buffer reservation 
for each multipacket message entering  the  network; resequence 
deadlocks are avoided by discarding out-of-sequence messages 
at  the  destination.  Other  networks (e.g., Telenet) have suf- 
ficient  nodal  storage to permit out-of-sequence messages to 
be accepted  at  a  destination  node  with  the  understanding 
that these may be discarded later if storage  congestion occurs; 
again, the existence of a source copy saves the  day. These 
and  other schemes  are discussed in  more  detail in the following 
sections. 

While the main objective of ETE controls is to  protect 
the  exit  node  from congestion, an important  byproduct is 
the prevention of global (i.e., internal) congestion.  Virtually 
all ETE controls are based on  a window  scheme that allows 
only up  to W sequential messages to be outstanding in the 
network  before an end-to-end ACK  is received. If the  net- 
work becomes  congested  (this may occur independently  of 
destination  node congestion), messages and ACK’s incur 
high end-to-end delays. These delays, combined  with  the 
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restriction  on  the  total number of  outstanding messages, ef- 
fectively contribute  to reduce the  input rate of new packets 
into  the  network. 

Several varieties of  ETE flow control schemes have been 
proposed and  implemented. We first  describe  four  representa- 
tive examples,  and then briefly review some  analytical and 
simulation  models for  the  performance evaluation  and compar- 
ison of  such schemes. 

A .  ARPANET  RFNMand Reassembly  Scheme 

ETE  flow control in ARPANET is exercised on a hos&pair 
basis [30],  [23]. Specifically, all messages traveling from 
the same source host  to  the same destination  host are carried 
on the same logical “pipe.” Each pipe is individually flow 
controlled by a window  mechanism. An independent message 
number sequence is maintained for  each pipe. Numbers  are 
sequentially assigned to messages flowing on  the pipe, and 
are checked at  the  destination  for sequencing and  duplicate 
detection purposes. Both  the source and  the  destination 
keep  a small window w (presently, w = 8) of currently valid 
message numbers. Messages arriving at  the  destination with 
out-of-range  numbers are discarded. Messages arriving out  of 
order are discarded since storing them (while waiting for  the 
missing message) may  lead to potential resequence  deadlocks. 
Correctly received messages are acknowledged  with short 
ETE control messages called RFNM’s (ready for  next mes- 
sage). Upon  receipt of an RFNM, the sending end  of  the pipe 
advances its transmission  window,  accordingly. 

RFNM’s are also used for  error  control. If an RFNM is 
not received after  a specified time  out (presently about 30 s), 
the source IMP sends a  control message to  the  destination 
inquiring about  the possiblity of an incomplete transmission. 
This technique is necessary to  keep source and  destination 
message numbers  synchronized  and also to request a retrans- 
mission from  the  host in the case of message loss. 

The window and message numbering mechanisms  described 
so far support  ETE flow control, sequencing and  error  control 
functions in the ARPANET. A  separate mechanism, known as 
reassembly buffer allocation [30], is used to prevent reas- 
sembly  deadlocks. Each multipacket message must secure a 
reassembly buffer allocation at  the  destination  node -before 
transmission. This is accomplished  by  sending a reservation 
message called a  REQALL (request for allocation) to  the 
destination  and waiting for an ALL (allocation) message 
from  the  destination before attempting transmission. To 
reduce  delay (and,  therefore, increase throughput)  of  steady 
multipacket message flow  between the same source-destina- 
tion pair, ALL messages are automatically piggybacked on 
RFNM’s, thus eliminating the reservation  delay for all mes- 
sages after  the first one. If a pending  allocation at  the source 
node is not claimed within a given time-out  (250 ms), it is 
returned to  the  destination  with  a “giveback” message. Single 
packet messages are transmitted to their  destinations  without 
buffer  reservation. However, if upon arrival at  the  destination, 
all the reassembly buffers are full, the single packet message 
is discarded and  a  copy is retransmitted  from  the source IMP 

after an explicit buffer reservation  has  been obtained.  Some 
pitfalls inherent in such schemes  are  described  in [23]. 

B. SNA Virtual Route Pacing Scheme 

Th@BM systems network  architecture (SNA) is an archi- 
tecture aimed at providing distributed  communications  and 
distributed processing capabilities between IBM systems [ 151, 
[16] . SNA was first announced in 1974. Since then,  the 
original set  of  functions which supported single rooted  net- 
works (i.e., single host) have been enhanced to  suppoft 
multiple-domain (i.e., multiple host)  networking. In this 
paper, we refer to SNA release 4.2 [ 161 . 

SNA devices can be subdivided into  four main categories: 
host computers (e.g., system/370),  communications  control- 
lers (e.g., 3704  and  3705), terminal  cluster controllers,  and 
terminal devices (e.g., TTY’s, CRT’s, readers, and printers). 
Distributed communications  with full routing, flow control, 
and global addressing capabilities  are provided only  on  store- 
and-forward networks  interconnecting  host  computers  and 
communication controllers. These nodes  are called subarea 
nodes in SNA. Terminals and terminal  cluster  controllers 
are connected  into this high level at these subarea nodes, 
which provide the necessary boundary  functions (e.g., global/ 
local address conversion,  etc.).  Thus, for purposes of this 
section, SNA can be viewed as the usual two-level network 
architecture, with  terminals and terminal  cluster  controllers 
at  the lower level, and  hosts  and  communications controllers 
at  the higher level. 

SNA is essentially a virtual circuit network, in the sense 
that each user session is associated with  a physical route  at 
session setup time.  The routing policy is a  static,  multipath 
policy which  maintains up  to eight distinct  routes between 
each  source-destination pair in the high-level network (i.e., 
between subarea nodes). These routes are called E R s  (ex- 
plicit routes), to distinguish  them from V R s  (virtual routes) 
defined  below. ER’s are defined as an ordered sequence of 
network  trunks,  and are  uniquely  identified  by ER numbers. 
When a failure is detected  on an ER  currently being used, 
the  next  ER on the list is then “switched  in.” One difficulty 
here is that  the list of E R s  must be established  by the  net- 
work designer each  time the  network  topology is changed. 

Next, virtual routes  (VRs) are  defined  between  each source- 
destination  node pair of  the high level network.  A  VR is 
essentially a virtual pipe which is constructed  on  top  of an 
ER  and is subject to flow control. Three  sets of VR’s, each 
with  a  different level of  priority are  maintained between each 
subarea node pair. Each set may  consist of  up  to eight VR’s, 
thus allowing for  up  to 24 VR’s between  each high level 
network  node pair. Active VR’s are identified by VR  numbers 
and are stored in  lists at each node. 

At setup  time,  the  entry  node scans the VR list and assigns 
the user session to  the first available virtual route  of desired 
priority. Several user sessions may be multiplexed on  the 
same VR. In turn, several VR’s may be multiplexed on the 
same ER. Finally, several ER’s can be multiplexed on the 
same trunk. 
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The rationale for  the  distinction between  virtual  routes 
and explicit routes (a unique  SNA feature  among all VC 
networks, which typically associate a virtual route with  a 
fixed path) is to “...insulate the virtual route layer from  the 
physical configuration” [ 161. As a consequence, user packets 
are driven through  the  network using the  ER ID number, 
while the  VR ID number needs to be checked only  at the 
endpoints of the  path. This  fe3ture  considerably reduces 
storage and processing overhead with respect to conventional 
VC schemes,  which  typically  require large maps at each 
intermediate  node  to  store  the  information relative to all 
virtual  circuits  traversing that  node. 

In the high-level network, flow control is applied  inde- 
pendently  to each VR  from  entry  to  exit  node. This scheme, 
known as VR pacing is actually a combination of ETE  and 
hop level flow control.  It is based on a  window  mechanism, 
in which the  entry  node  must request  (and obtain) permis- 
sion from  the  exit  node before sending. a new group of k 
packets, where k = window size. The  destination may grant 
(or delay) such permission depending on local buffer avail- 
ability.  The window size k varies from h to 3h, where h is 
the  path  hop  length.  The value of k is dynamically adjusted 
not  only  by  the  exit  node,  but also by any  intermediate  node 
along the  path on the basis of  its  buffer availability [l] . 
The  fact  that  both  the  end  node  and  the  intermediate  nodes 
can “modulate”  the  window size k makes VR pacing a hybrid 
ETE  and  hop flow control scheme. 

In  addition  to VR-pacing control, which operates  between 
subarea nodes,  the SNA architecture provides also for session 
level pacing which,  for terminals, extends  beyond subarea 
nodes  and individually flow  controls  each user session between 
terminal  and  host - computer. Session pacing is discussed in 
Section VI. ’ 

C.  GMD Individual Flow Control 
In GMDNET, entry-to-exit flow control is exercised  indi- 

vidually on  each virtual circuit,  hence  the  name of individual 
flow  control assigned to  the scheme [37]. We recall that 
GMDNET is a VC network in  which  a  fixed route is assigned 
to each user session at session setup  time. 

The main purpose of  entry-to-exit flow control  in GMDNET 
is to  protect  the  exit  node  from overflow caused by  low  sink 
rates. When the  source  host  rate  exceeds  the  sink  host  rate, 
the flow control mechanism  intervenes to slow down  inputs 
from  the source host  into  the  entry  node. This is achieved 
by maintaining  a  window of  outstanding packets between 
entry  and  exit  node  for  each virtual circuit.  The window  must 
be large enough to permit each virtual  circuit to efficiently 
utilize the  bandwidth available on  the  path. GMD simulation 
experiments have shown that w = h + 1  (where h = hop 
length of the  path) is a satisfactory choice under nominal 
load  conditions. Window size can be reduced if the  sink is 
slow in accepting packets. More precisely, when  for a given 
VC the  queue waiting to be transferred  from  exit  node to sink 
reaches the value w ,  further arrivals to  the  exit  node within 
that VC are  discarded and a negative ACK is returned  to  the 
source node. Each negative ACK causes a  window size reduc- 
tion of 1 at  the source node,  until  the minimum  window size 

w = 1 is reached.  Each positive ACK, on  the  other  hand, 
increases window size by 1,  until  the maximum  window 
size w = h + 1 is reached. In this  way,  window size is dy- 
namically controlled in the range 1 to h + 1  by positive and 
negative acknowledgments [37]. 

In addition to the  entry-to-exit flow control,  each  hop of 
the virtual circuit is also independently flow controlled (see 
Section 111). The  two layers of flow control,  entry-to-exit  and 
hop, are logically separated one  from  the  other, in that  the 
ETE  window is controlled by exit  buffer  occupancy, while 
hop window is controlled  by  intermediate  node congestion. 

Packets  within the same virtual  circuit  must  be delivered 
to  the  host in sequence, and in case of multipacket messages, 
must be reassembled before delivery to  the  host. Fixed path 
routing  and link level sequencing  imply that packets arrive 
at their destination in  sequence.  This  sequencing property, 
and  the  fact  that a number of buffers  sufficient to reassemble 
the largest size packet is permanently  dedicated to traffic 
leaving the  network, preclude the possibility of reassembly 
deadlocks and eliminate the need for reassembly buffer 
allocation  schemes of  the  type  implemented  in ARPANET. 

D.  Datapac Virtual Circuit Flow Control 

The Canadian  public data  network, Datapac, implemented 
with  the  Northern Telecom SL-10 Packet  Switching  System 
provides virtual  circuit services using an  internal  transport 
protocol built on  top  of a  datagram subnetwork [28]. Flow 
control is exercised from  entry  to  exit  node  on a  virtual 
circuit basis, although  no physical path is actually assigned to 
each virtual circuit, as was the case with SNA and GMDNET. 
The absence of a  fixed path leads to  some  complications 
in the resequencing and loss recovery procedures, which will 
soon be discussed. 

In Datapac, a  virtual  circuit is provided between the two 
endpoints of each user session. The virtual  circuit is imple- 
mented as the  concatenation of three  protocol segments:  a 
packet level X.25 protocol  from  the source device (i.e., data 
terminating  equipment or DTE) to  entry  node (i.e., data 
communications  equipment or DCE), an  internal  protocol 
from  entry DCE to  exit DCE, and a packet level X.25 proto- 
col from  exit  node (DCE) to  destination  node (DTE). Each 
one of these protocol segments is flow controlled  by a  window 
mechanism. Of particular interest  to us is the  fact  that window 
controls  on these  three  segments  are synchronized so as to 
provide a  means of matching  source  DTE  transmission rate 
with  destination DTE acceptance  rate. Window control syn- 
chronization is achieved by  withholding the  return of ACK’s 
on a  window if the  downstream window is full. 

As an example,  let us assume that all windows  are of size 
w = 3, and  that  the window between  entry  and  exit DCE is 
full (Le., there are three  outstanding packets). The  next  packet 
arriving from  the source DTE to  the  entry DCE will be  ac- 
cepted (assuming buffer space is available), but will not be 
immediately  acknowledged;  rather-, the ACK  will be withheld 
until an ACK from  the  exit DCE  is received, thus  opening  up 
the  downstream window [28]. 

Within the  concatenated window mechanism the  entry-to- 
exit flow control serves the  function  of  promptly reflecting 



GERLA  AND  KLEINKOCK: FLOW CONTROL 

back to  the source an exit segment congestion situation by 
withholding ACK’s. Recall that in GMDNET the  entry-to- 
exit flow control provided a similar service by dynamically 
adjusting the window with positive or negative ACK’s. In 
Datapac, things  are complicated, however,  by the  fact  that  the 
window mechanism is used not  only  for flow control,  but also 
for sequencing,  packet loss recovery, and  duplicate  detection. 
These latter  functions are not required  in the GMDNET, 
since sequencing is enforced  there  by  the fixed path  routing 
policy, and packet loss could  occur only if a  node along the 
path failed,  in  which case the virtual  circuit would be auto- 
matically  reinitialized. 

The use of window ACK’s for loss recovery in Datapac 
leads to  the following  problem. If the  exit DCE does not re- 
turn  to  the  entry DCE an ACK for a  correctly received 
packet (because the  exit segment is congested), the  entry 
DCE will retransmit the packet after  a  time-out, under the 
assumption  that  the packet was lost  (or was dropped  by  the 
exit DCE for lack of resequence space). If no ACK is received 
after  a specified number  of retransmissions, the  entry DCE 
will clear the virtual circuit,. In order to minimize the genera- 
tion  of duplicate  packets, the value of  time-out must be 
carefully  selected as a  function of window size and  other 
network parameters. 

E. Perfomance Models 

The great majority of entry-to-exit flow control mech- 
anisms are based on  the window scheme, Critical parameters 
in the window implementation are the size of  the  window, 
and if error  and loss recovery are to be provided, the retrans- 
mission time-out interval. Several analytic  and simulation 
models have been developed  recently to investigate the  impact 
of these  parameters on  throughput  and delay  performance. 
This  section briefly surveys some of the most significant 
contributions in  this  area. 

We start  with  the Kleinrock and Kermani model  of  a single 
source-to-destination stream  flow controlled by a window 
mechanism [26].  The  network  entry-to-exit delay is simplified 
as an M/M/l  queue  delay,  and  the  round  trip delay therefore 
follows an Erlang-2 distribution. (This approximation is 
supported by  simulation experiments showing that more 
accurate delay  assumptions do  not significantly change the 
nature of the results.) The  exit  node has finite storage and 
delivers packets to  the  destination  host on a finite  capacity 
channel. Consequently,  the  exit  node may occasionally over- 
flow and  drop packets. To provide for transmission integrity, 
the  entry  node will retransmit an unacknowledged  packet 
after  a  time-out interval.  This  simplified  window  model is 
solved analytically, yielding the  optimal (i.e., minimum 
delay)  window size and  time-out interval for  a given through- 
put  requirement  and  destination  buffer storage size. 

In a  subsequent paper [22],  the same authors propose an 
adaptive policy (the  “look-ahead” policy) for  the  dynamic 
adjustment  of window size to time-varying traffic  rate. In the 
proposed policy,  the window size is dynamically controlled 
by the  queue size at  the  exit  node. Numerical results show 
that  the delay versus throughput performance of the  adapt- 
ively controlled scheme is somewhat superior to  the  perform- 
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ance of  a scheme operated  under  static  control,  in  which the 
window is adjusted in accordance  with the  traffic volume. 
These .results are very encouraging, and are consistent with 

.experiments  on  dynamic window control carried 
inode networks [ 1  ] , [ 131 . 

The  models in [26],  [22]  approximate  the  network as a 
single queue  and therefore do  not  offer insight into  the de- 
pendence of window size w on  the  number  of  intermediate 
hops.  This issue is addressed  by a simple multihop model 
developed by  Kleinrock in [24]. In this  model a packet 
stream  from a single destination is transmitted across the 
network  on  a  k-hop  network  path. Infinite buffer  storage,  and 
negligible error rates are assumed on each hop. The  stream 
is flow controlled by a window  mechanism. In this model, 
as the window size w increases, the  end-to-end delay grows 
without limit while the  throughput  asymptotically reaches 
the  path capacity.. In order to find  a meaningful criterion  for 
the  optimization  of w, the  concept of “power” as defined 
in  Section 11-F is used. We find  that power is optimized by 
w = k. This  implies that,  at  optimum,  there should  be on the 
average one  packet in each  intermediate  queue. This result 
agrees with  out  intuition  that  the  “entry-to-exit pipe should 
be kept full (in fact, just full)” for  satisfactory performance. 
The general validity of this result is confirmed  by actual 
window implementations. In fact,  the SNA pacing scheme 
allows the window to dynamically vary from h to  3h, where 
h = number of intermediate  hops. Similarly, the GMD in- 
dividual flow control scheme uses a maximum  window of 
h S  1. 

The main limitation  of  the  two previous models is the 
single source, single destination traffic  assumption which 
excludes interference  at  a given node by other  traffic  tra- 
versing it.  The model by  Pennotti  and  Schwartz  [32] includes 
the effect of interference in an approximate fashion in that 
it represents a virtual  link situation in which end-to-end  link 
traffic flowing on  a  multihop  path must compete  at each 
hop with external traffic. This is essentially a “one hop” 
interference model in which  some external  traffic h is injected 
into  one  node along the  path  and is transmitted to  the  next 
node on the  path, where it then is removed from  the  net- 
work.  The purpose of this study is to evaluate the possible 
path congestion caused by an increase in the virtual link 
rate ho, both  with  and  without flow control. Congestion is 
defined as the relative average increase in  time delay expe- 
rienced by external users due to an increase in ho, taking 
X0 = 0 as a reference.  Without  flow control, congestion 
rapidly grows to  infinity even for  moderate values of Ao. By 
introducing  end-to-end window control which  limits to w the 
number of packets outstanding  on  the virtual link at  any 
one time, congestion can be bounded  for any value of ho. 
The value of the  upper  bound varies with w, and decreases 
for decreasing w, as expected. 

As an alternative to window  flow control,  hop flow control 
was also implemented in the  Pennotti  and Schwartz  model 
by setting a limit on the  number  of  link packets that would 
be stored  at each intermediate node [32]. This scheme ex- 
hibited essentially the same performance as the window 
scheme. The above experiments show that flow control 
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(either  window or hop) can be used effectively to maintain 
fairness in a  multiuser  environment with  conflicting  require- 
ments;  that is, by adjusting the window  parameter w, one can 
balance the relative user throughputs as desired. 

The previously mentioned model  offers  some insight into 
multiuser  flow control,  but suffers from  the limitation that 
only  one virtual  circuit can be flow controlled  at  a  time, 
the remaining traffic  components being kept  constant.  To 
remove this limitation,  a  number of multiple source, multiple 
destination models with selectively controlled user pairs have 
been  developed.  These  models  combine ETE flow control 
with  network access flow control,  and therefore may be 
regarded as hybrid models. Wong and Unsoy analyze a simple 
5-node  network  to which  individual entry-to-exit window 
control as well as isarithmic control are applied [41].  The 
isarithmic scheme is a  network access flow control scheme 
which controls  the  total  number  of packets allowed in the 
entire  network (see Section V for  additional details). The 
major  finding of this study is the  fact  that isarithmic control 
alone is not  enough  to guarantee efficient  network  operation. 
In  fact,  under some  unfavorable traffic  situations,  one  node 
pair may capture  most of the  permits, starving other pairs 
and leading to unfairness and  to overall performance degrada- 
tion. Similar results were found  by Price in  a series of simula- 
tion  experiments  [36].  The problem is corrected  by  intro- 
ducing  individual entry-to-exit flow controls in addition 
to isarithmic control. 

The  exact analysis of  multinode  networks  with individually 
controlled  node pairs becomes  impractical for topologies 
with  more  than five to six nodes because of the rapidly in- 
creasing computational  complexity of exact  solution  tech- 
niques [41].  To circumvent  this problem, Reiser recently 
proposed  an  approximate  solution  technique based on  a mean 
value analysis which is computationally  affordable even for 
large networks,  and which  reaches a  typical accuracy of 5 
percent in throughput  and 10 percent in  delay [38]. With this 
technique  it is now possible to analyze the  interaction of 
various  flow control schemes  in a  much more realistic environ- 
ment (i.e., large networks; varied traffic  patterns)  than was 
possible with  previous methods.  Important design problems 
such as the  optimization of window  parameters for all source- 
destination pairs in order  to maximize network  throughput 
(within given fairness constraints),  now  become  approachable. 

In spite  of  the previously mentioned advances  in computa- 
tional  solution  techniques, some  window  flow control issues 
are still too  complex  to be attached analytically. For example, 
the  dynamic  control  of window size in a  multinode  network 
is not amenable to  a  network-of-queues  model even with  the 
approximate  solution  methods. In these cases, simulation is 
still the leading performance evaluation tool  [13],   [ l]  , [36]. 

V. NETWORK ACCESS  FLOW CONTROL 

A. Objective 
The objective of  network access (NA)  flow control is to 

throttle  external  inputs based on measurements of internal 
network congestion.  Congestion  measures  may be local (e.& 
buffer  occupancy in the  entry  mode), global (e&  total 

number of buffers available in the  entire  network), or selective 
(e.g., congestion of the path(s)  leading to a given destination). 
The congestion condition is determined  at (or is reported  to) 
the  network access points and is used to regulate the access 
of external traffic  into  the  network. 

NA fiow control differs from  LL  and ETE  flow control 
in that  it  throttles  external  traffic to prevent overall  internal 
buffer  congestion, while LL flow control limits access to  a 
specific store-and-forward  node  to prevent local congestion 
and store-and-forward deadlocks, and ETE flow control 
limits the flow  between a specific source-destination pair to 
prevent congestion and  reassembly buffer  deadlocks at’ the 
destination. As we mentioned earlier,  however,’ both LL and 
ETE  schemes indirectly provide some form  of NA  flow control 
by reporting an internal  network congestion condition  back 
to  the access point  either via the backpressure  mechanism 
(LL scheme), or via the credit  slowdown caused by large 
internal delays  (ETE  scheme). 

Three NA flow control  implementations will be discussed: 
the isarithmic scheme,  a global congestion  prevention  scheme 
based on  the circulation of  a fixed number of permits  [8] ; 
the  input buffer  limit  scheme, a local congestion  scheme 
which sets a limit on  the  number of input  packets  stored 
at each node [27],  [13] ; and  the  choke  packet  scheme,  a 
selective congestion  scheme based on  the delivery of special 
control packets of that  name  from  the congested node  back 
to  the  traffic sources [29]. 

B. The  Isarithmic  Scheme 

Since the primary cause of network congestion is the 
excessive number  of packets stored in the  network,  an  intui- 
tively sound congestion  prevention principle consists of 
setting  a limit on  the  total  number  of  packets  that can circu- 
late in the  network  at  any  one time. An implementation of 
this principle is offered by the Isarithmic  scheme  proposed 
for  the National Physical Laboratories  network [8], [35]. 

The isarithmic  scheme is based on the  concept  of  a  “permit,” 
i.e., a  ticket  that permits a  packet to travel from  the  entry 
point to  the desired destination. Under  this concept,  the 
network is initially  provided with  a  number  of  permits, several 
held  in store  at  each  node. As traffic is offered by a  host  to 
the  network,  each  packet  must secure a  permit before  admis- 
sion to  the high level node is allowed. Each accepted  packet 
causes a reduction of one  in  the  store of permits available at 
the accepting node.  The  accepted  data packet is able to 
traverse the  network,  under  the  control of node  and  link 
protocols, until  its destination  node is reached. When the 
packet is handed over to  the  destination subscriber, the 
permit which  has  accompanied it  during  its  journey becomes 
free and  an  attempt is made to  add  it  to  the  permit  store  of 
the  node in which  it  now finds  itself. 

In order  to achieve a viable system in which permits  do  not 
accumulate in  certain  parts of  the  network  at  the expense of 
other  parts,  it is necessary to place a limit on  the  number  of 
permits that can be  held in store  by  each  node. If then, be- 
cause of this limit,  a newly freed  permit cannot be accom- 
modated at a  node (overflow permit),  it must  be sent else- 
where. The normal method  of carrying the  permit in  these 
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circumstances is to “piggyback” it on other traffic, be this 
data or control. Only  in the absence of  other  traffic need 
a special permit-carrying packet be generated. 

A  simulation program was developed  by NPL to evaluate 
the  performance  of  the  isarithmic scheme  in  various network 
configurations and in the presence of different  network 
protocols  [35].  The main conclusion of these simulation 
studies was that  the  isarithmic  scheme is a simple  congestion 
prevention  mechanism  which performs well in uniform traffic 
pattern  situations,  but may  lead to unnecessary throughput 
restrictions, and  therefore, to poor performance in the case of 
nonuniform, time-varying traffic  patterns. In particular, in 
the presence of high bandwidth  data transfers, there is the 
possibility that permits  are not  returned  to  the traffic  sources 
rapidly  enough to fully  utilize network capacity (the “permit 
starvation” problem).  This  would be the case when  the desti- 
nation  node  redistributes  the overflow  permits randomly in 
the  network.  If, on the  other  hand,  the  destination system- 
atically returns all the permits to  the  source,  the source- 
destination pair may end  up  capturing most of  the  network 
permits, thus causing unfairness. Tradeoffs between  different 
permit distribution schemes  are  investigated with  an analytical 
model  in [41]. Finally, a delicate  problem in isarithmic 
control is the bookkeeping of  permits, to avoid unauthorized 
generation or disappearance of permits. 

In spite of  the above limitations,  the isarithmic  scheme 
proved to be very effective  in weakly controlled  networks 
(namely,  networks  without  hop level flow control), eliminating 
congestion and deadlocks that  had  occurred  without flow 
control.  Some simulation experiments were also carried out 
on  networks  with  hop level flow control (specifically CQL), 
and  with  a simple form of local access control (one buffer 
on each output  queue was reserved for store-and-forward 
traffic). For this class of  networks (called strongly  controlled 
networks),  it was found  that  the  network performance did not 
show congestion  tendencies even without isarithmic control 
in the case of a fixed routing discipline. When the fixed 
discipline was replaced with an adaptive routing discipline, 
it was found  that  the  network would  become easily congested 
since the simple form  of  network access control  implemented 
would not prevent external traffic from flooding all the 
queues  in the  entry  node. Again, the  introduction  .of  the 
isarithmic  scheme was successful in  eliminating the congestion 
problem for  the adaptive routing case [36] . 

Critical parameters  in the isarithmic  scheme design are the 
total  number  of permits P in the  network  and  the maximum 
number  of permits L  that can be accumulated  at  each  node 
(permit queue).  Experimental  results show  that  optimal 
performance is achieved for P = 3N, where N = total  number 
of nodes,and  L = 3. An excessive number of permits  in the 
network would lead to congestion. An excessive value of 
L would lead to unfairness, accumulation of permits at  a few 
nodes,  and  throughput starvation at  the  others. 

C. Input Buffer Limit  Scheme 

The  input  buffer limit (IBL) scheme differentiates  between 
input  traffic (i.e., traffic from external sources) and  transit 

traffic, and  throttles  the  input traffic based on buffer occu- 
pancy at  the  entry  node. IBL is a local network access method 
since it  monitors local congestion at  the  entry  node,  rather 
than global congestion as does the isarithmic  scheme. Entry 
node congestion, on  the  other  hand, is often  a good indicator 
of glosal congestion because the well known backpressure 
effect will have propagated internal congestion conditions 
back to  the  traffic sources. 

The function  of IBL controls is to  block  input traffic when 
certain  buffer  utilization thresholds are reached  in the  entry 
node. This flow control  approach clearly favors transit  traffic 
over input traffic. Intuitively, this is a desirable property 
since a  number  of  network resources have already  been in- 
vested in transit  traffic. This intuitive  argument is supported 
by a  number  of analytical and simulation experiments proving 
the effectiveness of  the IBL  scheme. 

Many versions of IBL control can be  proposed.  Here, we 
describe and  compare  four  different  implementations  that 
have been  experimentally  evaluated. 

The term input  buffer limit  scheme refers to  a scheme 
restricting the  number of buffers made available to  input 
traffic  and was first introduced by the GMD research group 
[37],  [13].  The scheme proposed for GMDNET is a  by- 
product of the nested  buffer class structure used to allocate 
buffers  to different classes of  traffic. We recall from Section 
111-D that  the  ith  traffic class consists of all the packets that 
have already covered i hops.  Input traffic is assigned to class 
zero  (zero hops covered). Traffic class zero is entitled to use 
buffer class zero, which is a subset of the nodal  buffer  pool 
(in general, class i is entitled to use  all buffer classes G i). Thus, 
input packets are discarded when class zero  buffers are full. 
The size of buffer class zero  (referred to as input  buffer 
limit) was found  to have a significant impact  on  throughput 
performance under heavy loads.  Simulation experiments 
indicate  that  for  a given topology  and  traffic  pattern  there 
is an optimal  input  buffer limit  which maximizes throughput 
for heavy offered load.  The use of lower or higher  limits 
leads to  a  substantial  drop in throughput [ 131 . 

A version of IBL control  that is simpler than  the GMD 
version was proposed  by Lam [27]  and analytically  evaluated 
in an elegant  model.  Only two classes of traffic-input and 
transit-are considered  in  this  proposal.  Letting NT be the 
total  number of buffers in the  node  and NI the  input buffer 
limit  (where NI < NT), the following constraints are imposed 
at  each  node: 

1) number  of  input packets G V I ,  and 
2 )  number  of transit  packets G V T  

The analytical  results  confirm  simulation  results independ- 
ently  obtained  by  the GMD group. There is an optimal  ratio 
NI/NT, which  maximizes throughput for heavy offered load, 
as shown in Fig. 19. A good heuristic choice forNI/NT is the 
ratio between input message throughput and total message 
throughput  at  a  node, As shown in the figure, throughput 
performance  does not change significantly even for relatively 
large variations of the  ratio NI/NT around  the  optimal value, 
thus implying that  the IBL scheme is robust to  external 
perturbations  such as traffic  fluctuations  and  topology changes. 
One shortcoming  of this  model is that all nodes  in the  net 
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INPUT BUFFER LIMIT N,! NT 

Fig. 19.  Input  buffer  limit  scheme:  throughput  versus  buffer limita- 
tion  for  heavy  offered  load. 

are  assumed to have the same  blocking probability,  a some- 
what  unrealistic assumption. 

A scheme similar to Lam’s IBL  scheme had been earlier 
proposed  by Price 1351. In order  to prevent input  traffic 
from  monopolizing  the  entire buffer pool,  one  buffer  in  each 
output  queue was reserved for  transit traffic. This is essentially 
equivalent to setting  an  input  buffer limit NI = NT-C, where 
C = number  of  output channels.  Simulation studies showed 
that this simple network access control based on source 
buffer utilization was quite successful in single level networks. 

Kamoun  [21] proposes yet  another version of IBL control, 
in which an input  packet is discarded if  the total number  of 
packets in the  entry  node exceeds a given threshold (whereas 
in Lam’s scheme an  input packet is discarded when’ the  number 
of input packets exceeds  a given threshold).  Transit packets, 
instead, can freely claim all the buffers. The scheme is called 
drop-and-throttle flow control (DTFC)  policy since a  transit 

while all previous  schemes  assumed link level retransmission of 
overflow  packets (retransmit model). The DTFC  scheme 
was analyzed using a  network  of queues  model [21].  The 
results, shown in Fig. 20, clearly indicate  that  there is an 
optimal  threshold value L which  maximizes throughput  for 
each value of  offered load. Below the  threshold,  the  network 
is “starved”; above the  threshold,  the  network is congested. 
A similar scheme,  referred to as the free  flow  scheme, is 
described and analyzed  by Schwartz  and Saad in [41]. Pre- 
liminary  results indicate  that, while free  flow and IBL through- 
put  performances are compatible,  the free  flow scheme  offers 
substantial delay improvements. 

We have pointed  out  that IBL control prevents  congestion 
by favoring transit  traffic over input  traffic. In most cases 
(indeed, in all cases analyzed in the previously referenced 
studies), this  favoritism  leads to  throughput improvements. 
In some cases, however, unfairness may result.  Consider, 
for  example,  the  4-node  network  shown in Fig. 21. In this 
network,  two file transfers,  A to  A’  and B to B‘, respectively, 
are simultaneously competing  for  trunk  (2, 3). Node 2 sees 
traffic  A as transit  traffic, so it gives it preferential treatment 
over traffic  from B. Consequently,  the A-A’ packet stream 
can acquire more  buffers in node  2,  and  thus achieve better 
throughput  performance  than  the B-B‘ stream.  The unfairness 
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Fig.  20. Throughput  versus  load  for  a  121-node  network  for  drop- 
and-throttle  flow  control. 
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Fig.  21.  Unfairness  condition  produced  by  input  buffer  limit  and 
drop-and-throttle flow control  schemes. 

is particularly dramatic when  DTFC is used. With the DTFC 
policy, if the  A-packet  queue in node. 2 exceeds the  buffer 
threshold  (this  could easily occur if C2, < C1 2), B-packets 
cannot be accepted  by  node  2.  Consequently  B-traffic is 
completely  shut  off until the A-A’ file transfer is completed. 

D. Choke Packet Scheme 
The  choke  packet (CP) scheme, proposed for  the Cyclades 

network  [29], is based on  the  notion  of  trunk  and  path 
congestion. A trunk (link) is defined to be congested if its 
utilization  (measured over an appropriate  history window 
with  exponential averaging) exceeds a given threshold  (e&, 
80 percent). A path is congested if any of  its  trunks are 
congested. Path congestion information is propagated  in the 
network  together  with  routing  information  and  thus,  each 
node knows hop distance and congestion status  of  the  shortest 
path to each  destination. 

When a  node receives a  packet  directed  to  a  destination 
whose path is congested it takes the following actions. 

1) If the  packet is an input packet (i.e., it comes directly 
from  a  host),  then  the  packet is dropped. 

2 )  If the  packet is a transit packet,  it is forwarded  on  the 
path;  but  a  “choke”  packet  (namely,  a small control  packet) 
is sent back to  the source node  informing  it  that  the  path to 
that  destination is congested and  instructing  it to block  any sub- 
sequent  input packets to this destination.  The  path  the to 
destination is gradually unblocked if no  choke packets are 
received during a specified time interval. 

This is a greatly simplified description of the CP  scheme. 
Several other  features (which are essential to make the scheme 
workable) are discussed in  [29] . 
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It is clear that  the CP  scheme attempts  to favor transit 
traffic over input  traffic,  much in the same way as the 
IBL  scheme did.  The basic difference between  the  two 
schemes is the  fact  that IBL uses a  local  congestion  measure, 
namely,  the  entry  node  buffer  occupancy,  to indiscriminately 
control all input  traffic; whereas,  CP uses a path congestion 
measure to  exercise selective flow control on input  traffic 
directed to  different  destinations. 

Simulation  experiments based on  the Cigale network 
topology are given in Fig. 22 and  show  that  the CP scheme 
can introduce  substantial  throughput improvements (with. 
respect to  the  uncontrolled case) in  sustained  load conditions, 
asymptotically achieving the ideal performance  for infinite 
load [29]. 

VI. TRANSPORT LEVEL FLOW CONTROL 

A. Objectives 

A transport  protocol is a set  of rules that govern the  trans- 
fer of control  and  data  between user processes across the 
network.  The main functions  of  this  protocol are the  efficient 
and reliable transmission  of messages within  each user session 
(including packetization, reassembly,  resequencing, recovery 
from loss, elimination  of duplicates) and  the  efficient sharing 
of common  network resources  by several user sessions (obtained 
by  multiplexing many user connections on the same physical 
path  and by  maintaining  priorities between  different sessions 
to reflect the relative urgency). 

For efficient and reliable reassembly of messages at  the 
destination  host (or more generally, the DTE), the  transport 
protocol  must  ensure  that messages arriving at  the  destination 
DTE are provided adequate buffering. The  transport  protocol 
function which  prevents destination  buffer congestion and 
overflow is known as transport level flow control. Generally, 
this level of  flow control is based on a “credit” (or  window) 
mechanism as discussed earlier.  Namely, the receiver grants 
transmission  credits to  the sender as soon as reassembly 
buffers  become  free.  Upon receiving a credit,  the sender is 
authorized  to  transmit a message of  an agreed-upon length. 
When reassembly buffers  become full, no  credits are returned 
to  the  sender,  thus  temporarily  stopping message transmissions 

The  credit scheme  described above is somewhat vulnerable 
to losses, since a lost  credit may hang  up a connection. In fact, 
a  sender may wait indefinitely  for a lost  credit, while the 
receiver is waiting for a message. A  more robust flow control 
scheme is obtained by numbering credits relative to  the 
messages flowing  in the  opposite  direction. In this case,  each 
credit carries a message sequence number, say N ,  and a 
“window size” w. Upon receiving this credit,  the sender is 
authorized  to send all backlogged messages up  to  the (N $. 
w)th message. With the  numbered  credit scheme, if a credit 
is lost  then  the  subsequent  credit will restore proper  informa- 
tion  to  the sender [45]. 

Besides preventing destination  buffer congestion, the 
credit scheme also indirectly provides global network  con- 
gestion protection. In fact,  store-and-forward  buffer  con- 
gestiori at  the  intermediate  nodes along the  path may cause a 
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Fig. 22. Throughput  performance  in Cigale with  and  without  flow 
control. 

large end-to-end  credit  delay,  thus slowing down  the  return 
of credits to  the  sender,  and  consequently, reducing the rate 
of fresh messages input  into  the  network. 

B. Implementations 
Several versions of the  transport  protocol are  in existence, 

each incorporating  its  own  form of transport level flow control. 
Here, we briefly describe four representative implementations. 

The earliest example of  transport  protocol  implementation 
is the original version of  the ARPANET network  control pro- 
gram (NCP) [4]. NCP flow control is provided by  unnumbered 
credits called “allocate” control messages (see Section IV-D). 
Only one allocate could  be  outstanding  at a time (i.e., window 
size W = 1). 

The  French research network Cyclades provided the  en- 
vironment  for  the development  of the  transport  station 
(TS) protocol [SO]. In the  TS  protocol,  the flow control 
mechanism is based on  numbered  credits, each credit  author- 
izing the transmission  of  a variable size message called a 
letter. Flow control is actually  combined with  error  control 
in that  credits are carried  by  acknowledgment messages. 

The transmission control program (TCP) was a  second 
generation  transport  protocol developed by  the ARPANET 
research community in order  to overcome the deficiencies 
of the original NCP protocol [ 5 ] .  As in the  TS  protocol, 
flow and  error  control are combined in TCP. As a  difference, 
however, error  and flow control are on a byte  (rather  than 
letter) basis. This allows a  more  efficient utilization of re- 
assembly buffers  at  the  destination. 

In SNA,  the  transport level flow control is provided  by 
session pacing. The purpose of session-level pacing is to pre- 
vent one session end  from sending data more  quickly than 
the receiving session end can process the  data [ 161 . As in TCP 
and TS, session-level pacing is based on a  window concept, in 
which the receiving end grants  “credits” to  the sending end 
based on  its  buffer availability and processing capability. As 
a difference, however,  subarea nodes in SNA can control  the 
inbound flow from a  cluster controller  into  the  network  by 
withholding  the credits (called pacing responses in SNA) 
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for a given session, if the subarea node buffers are congested 
or if the Virtual Route  (VR) transmission  queue for  that 
session is congested. Specifically, session level pacing responses 
are intercepted  at  the  entry  node to exercise network access 
flow control  from  the terminal into  the high-level network 
[ 161 . Thus, session pacing may be viewed as a hybrid form of 

transport level flow control, which is obtained  by  concatenat- 
ing a network access level segment (from  the  terminal  to  the 
high-level network  node)  and an entry-to-exit level segment 
(controlled  by virtual route pacing). 

VII. CONCLUSIONS AND DIRECTIONS FOR  FURTHER 
RESEARCH 

In this  paper we have proposed  a taxonomy  of flow control 
mechanisms  based on a  multilevel structure. We have defined 
four levels of flow control  and have shown  how these levels 
are  actually  embedded  into corresponding levels of protocols. 
To  the  extent  that these  levels.can  be independently  defined, 
the analysis,. design evaluation and comparison of flow control 
schemes is greatly  simplified, since any  complex  control  struc- 
ture can be decomposed.  into smaller modules, and each 
module individually analyzed.  The overall performance is then 
obtained by studying  the  interaction  of  the various  modules. 

Recent advances  in  queueing theory have led to reasonable 
success in the modeling and analysis of individual levels of 
flow control. We have reported  on several performance  results, 
and have used such results to compare  different schemes. 

In real life, however,  some control  structures  defy  the 
simple,  hierarchical representation  here  proposed,  and seem 
to  combine  two  or more levels into  hybrid  solutions (see 
Fig: 10). This is particularly common in homogeneous  net- 
works (e.g., SNA)  in which a single manufacturer is responsible 
for  the  implementation  of  both DCE and DTE equipment  and, 
therefore,  has more freedom in the design of the various 
flow control levels. 

The existence of multiple levels of flow control  and  the 
possible integration of some of these into  hybrid arrange- 
ments immediately brings up a very critical issue in  flow 
control which  requires further  study,  namely,  the interaction 
between levels. Given that we understand  the  throughput  and 
delay implications of each specific level of flow control, we 
still have to  study  the  combined  effect when  these levels are 
operating simultaneously  in the  network.  For  instance,  net- 
work  experience seems to  indicate  that a network  equipped 
with a very conservative hop level flow control,  such as the 
SBP scheme in GMDNET or  the VC-HL scheme in Tymnet, 
does not require strong  network access or ETE flow control 
schemes  since network congestion situations are immediately 
reported  back to  the  entry  node  by  back pressure through  the 
hop level [36]. This type  of issue can be  fully  investigated 
only  by  developing  models  which  include multiple levels of 
flow control. An interesting  example in this direction was the 
combined isarithmic and  entry  to  exit flow control model 
presented  in [47] . More research is required in this area. 

Hybrid packet and circuit networks are now emerging as a 
solution to multimode (voice and  data;  batch  and interactive) 
user requirements [l 11 . These networks must  be equipped 
with novel flow control mechanisms. In fact, if the network 

were to apply  conventional  flow control schemes to  the 
packet  switched (P/S) component  only, leaving the circuit 
switch (C/S) component  uncontrolled,  then  the  C/S  component 
would very likely capture  the  entire  network  bandwidth 
during  peak hours. This may not cause congestion, since the 
C/S protocol is not as congestion  prone as the P/S protocol, 
but  it certainly  creates unfairness. Some form  of flow control 
on C/S  traffic  which is sensitive to  the relative P/S load is 
therefore  required. 

The integration of voice  and  data requirements in  packet 
switched networks has  been vigorously advocated in  recent 
years on grounds of improved  efficiency and reduced  cost 
[14].  Unfortunately,  little  attention has  been given to  the 
fact  that  integrated  networks require  a complete redesign of 
the conventional  flow control schemes since voice traffic 
cannot be buffered  and delayed in case of congestion. Priorities 
are  of  help  only if the voice traffic is a small fraction  of  the 
total traffic. For  the general case, new  flow control  techniques 
must be developed for voice. These techniques  should be 
preventive in nature, i.e., they  should  block calls before 
congestion  occurs, rather  than detecting congestion and  then 
attempting  to recover from  it, as is the case for  most  of  the 
conventional  flow control schemes for  data [ 101 , [3 I ]  . 

Routing and flow control procedures have traditionally 
been  developed independently in packet  networks,  under 
the assumption that flow control must keep excess traffic 
out of the  network,  and  routing must struggle to efficiently 
transport to destination whatever traffic was permitted  into 
the  network by the flow control scheme.  It  seems,  however, 
that  routing  and flow control can  be brought  together  into 
useful cooperation in  virtual  circuit networks, where a path 
must be selected  before data transfer on a user connection 
begins [12] . In this case, the  routing algorithm can be  in- 
voked  first to determine  whether a path  of sufficient residual 
bandwidth is available. If no  path is available, the virtual 
circuit connection is blocked immediately at  the  entry  node 
by the  network access flow control level, thus preventing 
congestion rather  than allowing it  to  occur  and  then  attempting 
to recover from  it. A combined  routing  and flow control 
strategy is implemented in Tymnet  [39] . 

Challenging flow control problems  exist  in multiaccess 
broadcast networks. In single hop multiaccess  systems, con- 
gestion prevention and  stability mechanisms are well under- 
stood,  and are usually directly embedded in the channel 
access protocol  [46]. In distributed,  multihop, multiaccess 
systems ( e g ,  multihop  ground radio  networks),  congestion 
prevention  becomes  a very hard problem because of the 
interaction  between  buffer  and channel  congestion.  Con- 
ventional  flow control schemes used in  hardwired nets can- 
not be directly applied. In particular,  the  hop level flow 
control should be revised to combine the  buffer allocation 
strategy with the retransmission control  strategy.  Some 
pioneering work in  this direction is reported in [2],  [48], 

Finally, growing user demands  require the interconnection 
of networks which  may implement different  flow control 
policies and which may even be built on  different media 
(e.g., satellite,  radio, cable, or optical fiber). These networks 

[431. 
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are interconnected by gateways which provide for  internet 
routing  and flow control, as well as for  protocol conversion 
between  two  adjacent  networks  [44],  [6]. It  appears that.+:a 
new level of flow control  must  therefore be defined in our 
hierarchy,  namely,  the gateway-to-gateway level. n1.s level 
should  be designed to  prevent the congestion of gateways 
along the  path,  and  should  be  supported  by explicit  gateway- 
to-gateway protocols for the exchange of  status  information. 
The status  information  should include buffer  occupancy  at 
the gateway, and  load  conditions in the adjacent networks, 
and could  probably be exploited also for gateway routing. 
Functionally,  the gateway-to-gateway protocol is positioned 
between the  entry-to-exit  protocol  and  the  transport  protocol 
hierarchy in Fig. 9. All the  other levels remain  unchanged. The 
actual  implementation  of  the gateway-to-gateway  flow control 
will be dependent  on  the  internet  protocol used. If the CCITT 
X.75 Recommendation, which is an  extension  of  the X.25 
virtual  circuit concept  to  internet  connections  [45] is adopted, 
the gateway-to-gateway  flow control will be virtual-circuit 
oriented,  and will be exercised on  a  connection-by-connection 
basis. Alternatively, datagram-oriented gateway level flow 
control schemes  can also be  implemented. 

The design of  efficient gateway flow control schemes is 
very challenging. It requires vertical consistency between  the 
gateway level and all the  other levels implemented in  each 
individual network as  well  as horizontal consistency across 
the various networks  on  the  internet  path. Specifically, the 
gateway level flow control must be able to balance  loads 
between  extremely diverse network  environments such as 
point-to-point,  satellite, cable, and ground  radio. These design 
requirements  further emphasize the need for  continuing 
research  in multilevel flow control models  in order  to  under- 
stand  the vertical interactions  between  the various levels in 
the  hierarchy, as well as the  horizontal  interactions  between 
the various segments of  a flow control chain  along an  internet 
path. 

In summary, we have presented a  framework  for  the  study 
of  flow control, showing that flow control mechanisms have 
advanced somewhat  beyond simply being “a bag of tricks” 
[34],  and  indeed can be conceptually organized into  a useful 
and well-structured  system  of controls. This structure is 
extremely  helpful  in  the survey and  comparison of  existing 
flow control  implementations, as well as in the  development 
of flow control models. In particular,  complex  control systems 
can be (and should be) decomposed  into smaller modules, 
thus simplifying the analysis of  each  module as well as the 
analysis of interactions between different modules. Further- 
more,  the  proposed flow control  structure is sufficiently 
flexible to  permit  extensions in response to new networking 
technologies and applications. 

Although our focus has  been on flow control models and 
performance  criteria, we expect  that  the  proposed  structure 
will prove to  be useful also for  the  actual  implementation of 
flow control  techniques. One must be  aware,  of  course,  of  the 
fact  that in actual  networks,  it is not always possible to 
develop and  update flow controls in a well structured fashion. 
The designer, in fact, is usually confronted  with  a  number 
of constraints imposed by  the preexisting protocol  structure 
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(in which  flow control mechanisms  must be embedded)  and 
by  limited storage and processing resources. The designer 
must therefore avoid overburdening the switch with overly 
sophisticated flow control mechanisms, and creating incon- 
sistencies and possibly deadlocks. These constraints,  together 
with  the  fact  that flow control is a  distributed multilevel 
control  function  that  cannot be confined  to  a well-defined 
modular  “black box,” make  flow control design a very hard 
task.  It is our strong  opinion, however, that  the  only way to 
prevent flow  control  implementations  from degrading to  the 
state, of an  uncontrollable “bag of  tricks” is to  identify an 
underlying structure in the early stage of flow control design, 
and  to  continuously verify this structure during the various 
updates of protocols  and flow control procedures. 

Indeed,  it is important  that  one be able to  subject a pro- 
posed flow control algorithm to various tests  of correctness, 
consistency and proper termination  [33] , [49]. This is, in 
general, a very difficult task whose solution requires advances 
in the  frontier  of  computer science. Unfortunately, since it 
is relatively difficult to  create efficient, deadlock-free,  flow 
control algorithms, we cannot  totally ignore this need for 
verification. Moreover, many difficulties with flow control 
procedures often arise due to errors in the detailed  imple- 
mentation  of otherwise correct algorithms. Consequently, 
it is important  that  a  modular  approach  to flow control 
design be taken,  that  the  code itself be confined to  isolated 
portions of the  network  operating system (rather  than 
sprinkled through  thousands of lines of code)  and  that  the 
mechanisms be simple enough to  be  understood  and  tested via 
simple  procedures. 
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