
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980 553

Flow Control: A Comparative Survey
. .

MARIO GERLA, MEMBER. IEEE. AND LEONARD KLEINROCK, FELLOW. IEEE

%,

(Invited Paper) w

Abstract-Packet switching offers attractive advantages over the more
conventional circuit-switched scheme, namely, flexibility in setting up user
connections and more efficient use of resources after the c o n n q p is
established. However, if user demands are allowed to exceed the system
Capacity. unpleasant congestion effects occur which rapidly neutralize the
delay and efficiency advantages. Congestion can be eliminated by using an
appropriate set of traffic monitoring and control procedures called flow
control procedures. Flow control can he exercised at various levels in a
packet network. The following levels are identified and discussed in this
Paper: hop level. entry-to-exit level. network access level, and transport
level. For each level, the most representative techniques are surveyed and
compared. Furthermore, the interaction hetween the different levels is
discussed.

I . INTRODUCTION

A packet-switched network may be thought of as a distrib-
uted pool of productive resources (channels, buffers, and

switching processors) whose capacity must be shared dynam-
ically by a community of competing users (or, more generally,
processes) wishing to communicate with each other. Dynamic
resource sharing is what distinguishes packet switching from
the more traditional circuit switching approach, in which
network resources are dedicated to each user for an entire
session. The key advantages of dynamic sharing are greater
speed and flexibility in setting up user connections across
the network and more efficient use of network resources
after the connection is established.

These advantages of dynamic sharing do not come without
a certain danger, however. Indeed, unless careful control is
exercised on the user demands, the users may seriously abuse
the network. In fact, if the demands are allowed to exceed the
system capacity, highly unpleasant congestion effects occur
which rapidly neutralize the delay and efficiency advantages
of a packet network. The type of congestion that occurs in
an overloaded packet network is not unlike that observed in a
highway network. During peak hours, the demands often
exceed the highway capacity, creating large backlogs. Further-
more, the interference between transit traffic on the highway
and on-ramp and off-ramp traffic reduces the effective through-
put of the highway, thus causing an even more rapid increase
in the backlog. If this positive feedback situation persists,
traffic on the highway may come to a standstill. The typical
relationship between effective throughput and offered load

Manuscript received December 15, 1979; revised Jaunary 8, 1980.
This work was supported by the Advanced Research Projects Agency of
the Department of Defense under Contract MDA 903-77-C-0272.

The authors are with the Department of Computer Science, Uni-
versity of California, Los Angeles, CA 90024.

in a highway system (and, more generally, in many uncontrol-
led, distributed dynamic sharing systems) is shown in Fig. 1.

By properly monitoring and controlling the offered load
many of these congestion problems may be eliminated. In a
highway system, it is common to control the input by using
access ramp traffic lights. The objective is to keep the inter-
ference between transit traffic and incoming traffic within
acceptable limits, and to prevent the incoming traffic rate
from exceeding the highway capacity.

Similar types of controls are used in packet switched net-
works, and are called flow control procedures. As in the
highway system, the basic principle is to keep the excess
load out of the network. The techniques, however, are much
more sophisticated since the elements of the network (i.e.,
the switching processors) are intelligent, can communicate
with each other, and therefore can coordinate their actions
in a distributed control strategy.

' Internal network congestion may also be relieved by re-
routing some of the traffic from heavily loaded paths to
underutilized paths. It is important to understand, however,
that routing can reduce and, perhaps, delay network con-
gestion; it cannot prevent it. We do not discuss the inter-
actions between routing and flow control in this paper. The
interested reader is referred to the routing protocol survey
paper by Schwartz and Stern in this TRANSACTIONS [5 1] .

The main functions of flow control in a packet network

1) prevention of throughput degradation and loss of ef-

2) deadlock avoidance,
3) fair allocation of resources among competing users,

4) speed matching between the network and its attached
users.

Throughput degradation and deadlocks occur because the
traffic that has already been accepted into the network (i.e.,
traffic that has already been allocated network resources)
exceeds the nominal capacity of the network. To prevent
overallocation of resources, the flow control procedure in-
cludes a set of constraints (on buffers that can be allocated,
on outstanding packets, on transmission rates, etc.) which
can effectively limit the access of traffic into the network
or, more precisely, to selected sections of the network. These
constraints may be fixed, or may be dynamically adjusted
based on traffic conditions.

Apart from the requirement of throughput efficiency,
network resources must be fairly distributed among users.

are:

ficiency due to overload,

and

0090-6778/80/0400-0553$00.75 0 1980 IEEE

554 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

I
OFFERED LOAD

Fig. 1. Effective throughput versus offered load in an uncontrolled,
distributed dynamic sharing system.

Unfortunately, efficiency and fairness objectives do not al-
ways coincide. For example, referring back to our highway
traffic situation, the effective throughput of the Long Island
Expressway could be maximized by opening all the lanes to
traffic from the Island to New York City during the morning
rush hour, and in the opposite direction during the evening
rush hour. This solution, however, would also maximize the
discontent of the reverse commuters (and we all know how
dangerous it is to anger a New Yorker)! In packet networks,
unfairness conditions can also arise (as we will show in the
following sections); but they tend to be more subtle and less
obvious than in highway networks because of the complexity
of the communications protqcols. One of the functions of
flow control, therefore, is’ io prevent unfairness by placing
selective restrictions on the amount of resources that each
user (or user group) may acquire, in spite of the negative
effect that these restrictions may have on dynamic resource
sharing and, therefore, overall throughput efficiency.

Flow control can be exercised at various levels in a packet
network. The following levels are identified and discussed
in this paper.

1)Hop Level: This level of flow control attempts to main-
tain a smooth flow of traffic between two neighboring nodes
in a computer network, avoiding local buffer congestion and
deadlocks. (We shall devote Section 11 to the discussion of
this form of flow control.)

2) Entry-to-Exit Level: This level of flow control is gen-
erally implemented as a protocol between the source and
destination switch, and has the purpose of preventing buffer
congestion at the exit switch (Section 111).

3)Network Access Level: The objective of this level is to
throttle external inputs based on measurements of internal
(as opposed to destination) network congestion (Section

4) Transport Level; This is the level of flow control asso-
ciated with the transport protocol, i.e., the protocol which
provides for the reliable delivery of packets on the “virtual”
connection between two remote processes. Its main purpose
is to prevent congestion of user buffers at the process level
(i.e., outside of the network) (Section V),

?V).

Some authors reserve the term “flow control” for the
transport level, and refer to the other three levels of control
as congestion control [34]. This terminology is used to
emphasize the physical distinction between the first three
levels, which are realized in the communications subnet

.(and therefore are the responsibility of the network imple-
menter) and the fourth level, which is realized in the user
devices (and therefore is the responsiblity of the network
customer). In this paper, we have chosen to use the term
flow control for all four levels.

The design of an efficient flow control strategy for a packet
network is a complex task in many ways.’The most critical
issue is the fact that flow control is a multilayer distributed
protocol involving several different levels. At each level, the
flow control implementation must be consistent and compat-
ible with other protocol functions existing at the same level.
Furthermore, the interactions between .different levels must
be cakfully studied in order to avoid duplication of functions
on one hand, and lack of coordination on the other.

The purpose of this paper is to provide a taxonomy of
flow control mechanisms based on the above defined multi-
level structure. First, we review problems, functions, and
performance measures of flow control. Then, for each level
we survey the most representative flow control ,techniques
that have been proposed and/or implemented, providing a
performance comparison among’techniques at the same level,
and discussing the interaction between techniques at different
levels. Finally, we briefly mention some new flow control
issues raised by novel computer network applications. . .

11. FLOW CONTROL: PROBLEMS, FUNCTIONS, AND
MEASURES

Our overall problem is to identify mechanisms which
permit efficient dynamic sharing of the pool of resources
(channels, buffers, and switching processors) in a packet
network. In this section, we first describe and illustrate the
congestion problems caused by lack of control. Then we
define the functions of flow control and the different levels
at which these functions are implemented. Finally, we intro-
duce performance measures for the evaluation and comparison
of different flow control schemes.

A. Loss of Efficiency

The main cause of throughput degradation in a packet
network is the wastage of resources. This may happen either
because conflicting demands by two or more users make the
resource unusable (e.g., collisions on a random access channel);
or because a user acquires more resources than strictly needed,
thus starving other users (e.g., a slow sink fed by a fast source
may create a backlog of packets within the network which
prevents other traffic from getting through). The two resources
that are most commonly “wasted” in a packet network are
communications capacity and storage capacity.

Buffe’r wastage is an indirect consequence of limited nodal
storage: a given end-to-end packet stream may be blocked
at an intermediate node along the path because all of the
buffers have been “hogged” by ,other streams. This may
happen even if channel bandwidth is plentiful along the
blocked stream path, thus causing an unnecessary loss of

GERLA A N D KLEINROCK: FLOW CONTROL

throughput. The source of this throughput degradation is that
some users unnecessarily monopolize (i.e., waste) the buffers
at some congested node.

A simple example of throughput degradation caused by
buffer interference is shown in Fig. 2. Two pairs of hosts,
(A, A ‘) and (B,q B’), are engaged in data transmission through
a single network node. Access line speeds (in arbitrary units)
are given in Fig. 2. The traffic requirement from A to A’
is constant and is equal t o 0.8 (measured in the same units as
the line speed). The requirement from B to B‘ is vajable,
and is denoted by X. When X approaches 1, the output queue
from the switch to host B’ grows indefinitely large filling up
all the buffers in the switch. Packets arriving when all the
buffers are full are discarded, and are later retransmitted by
the source host (we refer to this model as the retransmit
model). If we plot the total throughput, i.e., the sum of
(A, A’) and (B. B’) delivered traffic as a function of X (as in
the solid curve of Fig. 3), we note that for X = 1, the through:
put experiences a sharp drop from 1.8 to 1.1. The drop is
due to the fact that the switch can handle the entire user
demand = h + 0.8 for X, < 1; while for X 2 1, the switch
buffers become full, causing overflow. Consequently, large
queues build up in both the A and B hosts. With a heavy load,
the rate of packet transmissions (and retransmissions) from
B is 10 times the rate from A because of the difference in line
access speeds. Thus, packets from B have a 10 times better
chance of being accepted when a buffer becomes free than
packets from A, leading to a 10 to 1 imbalance in effective
throughput. Since the -(B, B‘) throughput is limited to 1,
the (A, A’) throughput is reduced to 0.1 (i.e., one tenth of
the AA’ throughput), yielding a total throughput = 1.1 for
X > 1.

In this example, we have observed a decrease in useful
throughput caused by an increase o f offered load beyond the
critical system capacity. This throughput degradation is
typical of congested systems, and is often taken as a definition
of congestion (i.e., a system is “congestion-prone’’ if an
increment in offered load causes a reduction in throughput)

In the previous example, we assumed that dropped packets
would be retransmitted from the host. A similar analysis can
be carried out assuming that dropped packets are lost (loss
model). The throughput versus offered load performance is
similar to that of the retransmit model, although the drop is
somewhat smoother in this case (the dashed curve of Fig. 3).

Throughput degradation effects, caused by inefficient
allocation (and therefore wastage) of buffers are found also
in multinode networks as reported by several studies [27],
[131 , [I81 . To prevent this type of degradation, proper
buffer allocation rules are generally established at each node,
as soon described.

Another cause of throughput degradation is channel
wastage. This problem manifests itself very clearly in multi-
access channels (e.g., packet satellite, or packet radio channels),
when users transmit packets at random times without prior
coordination (random access). A well-known example is
offered by the ALOHA channel [23]. Packets that collide
are lost, thus causing channel wastage and consequently,
throughput degradation. Congestion prevention in multi-

~ 7 1 .

555

0.8

1

0
SWITCH

C=l

n
Fig. 2. Buffer interference example.

d 1
0 1

k

Fig. 3. Throughput degradation of system of Fig. 2 due to buffer
interference.

access channels is discussed in [46] in this TRANSACTIONS.
Also, it is clear that unnecessary retransmissions of a packet
represent another form of channel wastage. Yet another
manifestation is the use of unnecessarily long paths in a net-
work (e.g., looping in routing algorithms).

B. Unfairness
Unfairness is a natural byproduct of uncontrolled competi-

tion. Some users, because of their relative position in the net-
work or the particular selection of network and traffic param-
eters, may succeed in capturing a larger share of resources
than others, and thus enjoy preferential treatment.

One example of unfairness has already been given in Figs.
2 and 3 where the (B-B’) flow is allowed to exceed the (A-
A’) flow by a factor of ten. Another obvious example of
unfairness is offered by the single switch loss model in Fig. 4.
The speed of the output trunk is 1. Hosts A and B are injecting
data into the switch with rates 0.5 and X, respectively. For
fairness, the output trunk should be equally shared by the
two hosts. However, the loss model performance results shown
in Fig. 5 indicate that for large values of X, host B captures
the entire output trunk bandwidth, reducing the A through-
put to zero. As previously observed, for X > 0.5 host B has a
far better chance to seize free buffers in the switch than
host A. Specifically, the ratio of A-packets to B-packets in
the switch at heavy load is roughly equal to 0.5/X. Thus,
the ratio of A-throughput to B-throughput is also 0.5/h,
explaining the behavior in Fig. 5 .

556 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

Fig. 4. Example of unfairness.

I-

I-

O 0.5
A

Fig. 5. Performance of system shown in Fig. 4.

Cases of unfairness have been reported in many multinode
network studies, and several “fairness” techniques have been
proposed. Unfortunately, the problem of fairness is consider-
ably more difficult to deal with than the problem of total
throughput degradation because a general, unambiguous
definition of fairness is not always possible in a distributed
resource sharing environment.

C. Deadlocks

A deadlock condition manifests itself by a (total or partial)
network crash. Deadlocks often occur because of a cyclic
wait of resources to become available. That is, one user is
holding a portion of the resources that he currently needs
and is waiting for another user to release the remaining re-
sources necessary to complete his task and this user is waiting
for yet a third user, etc., such that the sequence of “waiting”
users closes into a cycle, and it is immediately seen that no
user in the cycle can make any progress [3] . Thus, the
throughput for this subset of users is reduced to zero.

Deadlocks are likely to occur in a network when the
offered load exceeds network capacity. For a simple example
0f.a deadlock, consider two switches, A and B, connected by
a trunk carrying heavy traffic in both directions (see Fig. 6).
Under the heavy traffic assumption, node A rapidly fills up
with packets directed to B ; and vice versa, B fills up with
packets directed to A . If we assume that dropped packets
are retransmitted, then each node must hold a copy of each
packet, (and therefore a buffer) until the packet is accepted
by the other node. This may result in an endless wait in which
a node holds all of its buffers to store packets being trans-
mitted to the other node, and keeps retransmitting packets
to the other node waiting for buffers to be freed there. Con-
sequently, na useful data are transferred on the trunk. It
turns out that this type of deadlock (known as direct store-
and-forward deadlock [191) is relatively easy to prevent by

Fig. 6 . Deadlock example.

setting simple restrictions on buffer usage at each node. A
more extensive discussion of deadlocks will be given in
Section 11.

It is important to point out that buffer deadlocks are
possible only in networks which retransmit dropped packets,
i.e., which save a copy of a packet at each node while trans-
mitting the packet to the next node on the path, and retrans-
mit a copy of the packet in case of overflow (retransmit
model). If dropped packets are not retransmitted (i.e., a loss
model), the sending node is not required to save a copy of
the packet until acceptance at the next node, thus removing
a necessary condition for deadlocks. Thus, lossy networks
are deadlock free; however, an additional recovery mechanism
for lost packets must then be provided at the end-to-end
level.

D. Flow Control Functions

Flow control may be defined as a protocol (or more gen-
erally, a set of protocols), designed to protect the network
from problems related to overload and speed mismatches.
Solutions to the three problems just discussed (maintaining
efficiency, fairness and freedom from deadlock) are accom-
plished by setting rules for the allocation of buffers at each
node and by properly regulating and (if necessary) blocking
the flow of packets internally in the network as well as at
network entry points. Actually, multiple levels of flow control
are generally implemented in a network, as we shall see.

Efficiency and congestion prevention benefits of flow
control do not come for free. In fact, flow control (as with
any other form of control in a distributed network) may
require some exchange of information between nodes to
select the control strategy and possibly, some exchange of
commands and parameter information to implement that
strategy. This exchange translates into channel, processor, and
storage overhead. Furthermore, flow control may require
the dedication of resources (e.g., buffers, bandwidth) to
individual users, or classes of users, thus reducing the statistical
benefits of complete resource sharing. Clearly, the tradeoff
between gain in efficiency (due to controls) and loss in. ef-
ficiency (due to limited sharing and overhead) must be care-
fully considered in designing flow control strategies. This
tradeoff is illustrated by the curves in Fig. 7, showing the
effective throughput as a function of offered load. The ideal
throughput curve corresponds to perfect control as it could
be implemented by an ideal observer, with complete and
instantaneous network status information. Ideal throughput
follows the input and increases linearly until it reaches a
horizontal asymptote corresponding to the maximum theo-
retical network throughput. The controlled throughput
curve is a typical curve that can be obtained with an actual

GERLA AND KLEINROCK: FLOW CONTROL 557

IDEAL : . ’

DEADLOCK 1

OFFERED LOAD

Fig. 7. Flow control performance tradeoffs.

control procedure. Throughput values are lower than with
the ideal curve because of imperfect control and control
overhead. The uncontrolled curve follows the ideal curve for
low offered load; for higher load, it collapses to a very low
value of throughput and, possibly, to a deadlock.

Clearly, controls buy safety at high offered loads at the
expense of somewhat reduced efficiency. The reduction in
efficiency is measured in terms of higher delays (for light
load) and lower throughput (at saturation). Furthermore,
experience shows that flow control procedures are quite
difficult to design and ironically, can themselves be the source
of deadlocks and degradations. In particular, when one con-
trols flow, one places constraints on the flow. If one cannot
meet a constraint, then the result is a deadlock. Or, if one is
slow in meeting the constraint, the result is a throughput
degradation.

E. Levels o f Flow Control

Flow control in a packet network can be best described as
a multilayered structure consisting of several mechanisms
operating independently at different levels. Since flow control
levels are closely related to (and sometimes imbedded in)
protocol levels, it is helpful for us to begin by briefly re-
viewing the network protocol structure, pointing to the flow
control provisions existing at each level [171 . The flow control
level structure will then be defined following the protocol
structure model.

Fig. 8 depicts the typical protocol layer architecture
implemented in a packet network, using as a reference a
network path connecting user devices called DTE’s (data
terminating equipment) through a number of intervening
communications switches called DCE’s (data communications
equipment). For the user-to-network (i.e., DTE-to-DCE)
interface, a standard set of protocol levels is now being defined
by IS0 and ANSI [9]. For the internode protocols within
the communications subnetwork, there is less emphasis on
standardization since different network manufacturers tend
to select different solutions to best exploit their equipment
capabilities. In spite of these differences, it is still possible
to define a set of reference levels for internal network proto-
cols which closely parallel the DTE-DCE interface protocol
levels.

r

TRANSPORT LEVEL
c

t ENTRY TO EXIT LEVEL I

DTE: Data Terminating Equipment (e.g., Host. Terminall

DCE: Data Communications Equipment k g . . Swtching Processor1

Fig. 8. Network protocol levels.

Starting from the bottom of the protocol hierarchy, we
have the physical level which has the function of activating
and deactivating the electrical connection between the nodes.
No flow control functions are assigned to this level.

Above the physical level, we have the link level which
serves . the purpose of transporting packets reliably across
individual physical links. One of the functions of this proto-
col is related to flow control, and consists of retransmitting
packets that are dropped because of congestion at the re-
ceiving node. In some protocols, a congested receiver may
stop the sender by using appropriate commands (e.g., RNR:
receiver not ready, in HDLC and SDLC; or, XOFF in asyn-
chronous terminal connections), As mentioned before, we find
two different types of links in the network: the internal
(or node-to-node) link and the network access link. Cor-
respondingly, we have (at the same level in the protocol
hierarchy) two types of link protocol: the network access
protocol and the node-to-node protocol. Typical examples
of link protocol implementation are HDLC, SDLC, and
X.25 level 2 (which is a subset of HDLC).

Above the link level, we have the packet level protocol,
which defines the procedures for establishing end-to-end user
connections through the network, and specifies the format
of the control information used to route packets to their
destinations. Two different versions of packet protocol exist:
the virtual circuit protocol and the datagram protocol.

When the virtual circuit (VC) implementation is used, a
“virtual” circuit connection must be set up between a pair
of users (or processes) wishing to communicate with each
other before the data transfer can be started. The establish-
ment of this circuit implies dedication of resources of one
form or another along the network path. A typical virtual
circuit implementation, used in Transpac [7] , assigns a fixed
path to each connection at setup time. A virtual circuit ID
number, stamped in the packet header, uniquely identifies
the packets belonging to a connection, and is used to route

558 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. C O M - ~ ~ , NO. 4, A P R I L 1980

packets to the destination using routing maps implemented
at each intermediate node at set up time. From the flow
control point of view, the VC protocol has the distinguishing
feature of permitting selective flow control on each individual
user connection. This selective flow control can be applied at
the internode level as well as at the. network access level.
Since a fixed path is maintained for the entire user session,
the selective flow control can also be extended from entry
to exit switch and if so desired, even from entry to exit DTE.

As opposed to the virtual circuit implementation, the
datagram implementation does not require any circuit set-
up before transmission. Each packet is independently sub-
mitted to the network, and explicitly carries in its header all
the information required for its delivery to destination [34].
Selective flow control, on a connection by connection basis,
is not available in the datagram implementation since the
packet header does not contain specific connection informa-
tion (it merely posts source and destination DTE addresses).

Above the packet protocol, we find (within the subnet
only) the entry-to-exit (ETE) protocol. The objective of this
protocol is the reliable transport of single and multipacket
messages from network entry to network exit node. Important
functions of this protocol which are related to flow control
are the reassembly of multipacket messages at the exit node
and the regulation of input traffic using buffer allocation and
windowing techniques. Some network implementations do
not have the ETE level of protocol. In this case, the ETE
functions are relegated to higher level protocols.

The highest level of network protocol which has impact
on flow control is the transport protocol. This protocol
provides for the reliable delivery of packets on the “Virtual”
connection between two remote processes. One of the flow
control related functions of this protocol is the protection
of destination buffers. The goal is to regulate the flow so as
to make the most efficient use of network resources, while
avoiding buffer overflow at the destination. “Window” and
“credit” schemes are generally used for this purpose.

The above network protocol review has identified various
flow control functions and capabilities built into different
levels of protocols, and has brought to our attention the fact
that each protocol level has its own distinct flow control
responsibilities. It is now clear that the classification into the
four types of flow control procedures mentioned earlier
parallels the classification of network protocols. Recall that
there is:

1) hop (or node-to-node) level (Section 11),
2) network access level (Section III),
3) entry-to-exit level (Section IV), and
4) transport level (Section V).
The diagram in Fig. 9 illustrates these levels of flow control

for a typical network path. A comparison with Fig. 8 reveals
the close relationship between flow control and protocol
level structures.

Unfortunately, the true system behavior is far more com-
plex than our models and classifications attempt (or can
afford) to portray. Therefore, actual networks may not always
mechanize all of the above four levels of flow control with
distinct procedures. It is quite possible, for example, for a

TRANSPORT LEVEL * c

ENTRY TO EXIT LEVEL

Fig. 9. Flow control levels.

single flow control mechanism to combine two or more levels
of flow control. On the othei hand, it is possible that one- or
more levels of flow control may be missing in the network
implementation. The matrix in Fig. 10 provides a synopsis
of the main network implementations and flow control
schemes that will be surveyed in this paper. It is seen that
some of the schemes cover more than one level.

F. Perfomance Measures

We wish to define a quantitative measure of flow control
performance for various reasons. First, we wish to be able to
“tune” the parameters of a given flow control scheme so as
to optimize a well defined performance criterion. Second, we
wish to carefully weigh performance benefits against over-
head introduced by flow control. Third, we are interested in
comparing the performance of alternative flow control
schemes in quantitative terms.

Throughput efficiency (where throughput is expressed in
packets/s) is probably the most common measure of flow
control performance. Total effective throughput (sum of all
the individual contributions) is evaluated as a function of
offered load. This representation is particularly useful to
determine the critical load in an uncontrolled system and to
assess the throughput efficiency of a controlled network at
heavy load.

Another common measure is the combined delay and
throughput perfomance. The delay-throughput profile allows
us to determine the delay overhead introduced by the controls
(which the throughput versus offered load curve did not
display). In general, it gives us a more complete picture of
system performance than does throughput behavior alone.
In fact, a system may be designed to deliver high through-
put at heavy load, and yet it may experience intolerable
delays at light load.

A more compact measure of combined throughput and
delay performance is offered by the concept of “power”
[131 , [24] . The simplest definition of power is the ratio of
throughput over delay; it is, therefore, a function of the
offered load. In fact, it defines the “knee” of the through-
put-delay profile as that point where power is maximized, and
as shown in Fig. 11 this knee occurs where a ray out of the
origin is tangent to the performance profile [24]. A very
nice characterization of this maximum power point is such
that it occurs when the average buffer occupancy at each

GERLA AND KLEINROCK: FLOW CONTROL

COL RFNM NCP

NETW. ACC.

ENTRY-EXIT

TRANSP.

TRANSPAC

SDLC VR SESSION
PACING PACING

NOT DEFINED

GMDNET

I-C SEP

NOT DEFINED

Fig. 10. Classification of actual flow control implementations.

THROUGHPUT y

Fig. 11. Delay, throughput, and power.

intermediate node on the path is unity. In [25], it was shown
that blocking due to loss systems could easily be included in
a more general definition of power (by multiplying the simple
definition by one minus the blocking probability); this leads
to system designs whose optimum operating point is easily
found and which corresponds to the operating point one
would intuitively choose. Much more general definitions of
power are also studied in [25].

In some important cases, power is maximized for a value
of offered load which is approxjmately half of the saturation
load [24]. The maximum’ power value reflects both delay
performance (at light load) and throughput performance (at
heavy load) and therefore, represents a good figure o f merit
of the flow control implementation.

111. HOP LEVEL FLOW CONTROL

A . Objective

The objective of hop level flow control is to prevent store-
and-forward buffer congestion and its consequences, namely,
throughput degradation and deadlocks. Hop level flow control
operates in a local, “myopic” way in that it monitors local
queues and buffer occupancies at each node and rejects store-
and-forward (S/F) traffic arriving at the node when some
predefined thresholds (e.g., maximum queue limits) are
exceeded. The function of checking buffer thresholds and
discarding (and later retransmitting) packets on a network
link is often carried out by the data link control protocol.

This locality of the control does not preclude, however,
possible end-to-end repercussions of hop level flow control
due to the “backpressure” effect [i.e., the propagation of
buffer threshold conditions from the congested node upstream
to the traffic source(s)]. In fact, the backpressure property

559

is effi,cientlV exploited in several network implementations
(as soon described).

Store-and-forward congestion has two unpleasant coil-
sequences: throughput degradation and deadlocks. These
conditions were described in Sections 11-A and 11-C, respec-
tively. In the remainder of this section, we survey and compare
a number of hop level flow control procedures, specifically
designed to eliminate these problems.

B, Classification of Hop Level Control Schemes
The hop level flow control scheme can play the role of

arbitrator between various classes of traffic competing for a
common buffer pool in each node. A fundamental distinction
between different flow control schemes is based on the way
the traffic entering a node is subdivided into classes.

One family of hop flow control schemes distinguishes
incoming packets based on the output queue they must be
placed into. Thus, the number of classes is equal to the
number of the output queues; the flow control scheme super-
vises the allocation of store-and-forward buffers to the output
queues. Some limit (fixed or dynamically adjustable) is de-
fined for each queue; packets beyond this limit are discarded.
Hence, the name channel queue limit schemes is generally
given to such mechanisms (see Section 111-C).

Another important family of hop flow control schemes
distinguishes incoming packets based on the “hop count”
(i.e., the number of network links that they have so far
traversed). This implies that each node keeps track of N - 1
classes of traffic, where N - 1 = number of different hop counts,
and N = the number of nodes in the network (note that if
loopless routing is assumed, no network path can exceed
N - 1 loops in length), and allocates a (fixed or adjustable) num-
ber of buffers to each class. We will refer to this family of
schemes as buffer class schemes (see Section 111-D).

A third family distinguishes packets based on the virtual
circuit (Le., end-to-end’session) they belong to. This type of
scheme requires, of course, a virtual circuit network architec-
ture; it assumes that each node can distinguish incoming
packets based on the virtual circuit they belong to and keep
track of a number of classes equal to the number of virtual
circuits that currently traverse it. Note that the number of
classes varies here with time (since virtual circuits are dynam-
ically created and realeased), as distinct from the previously
mentioned schemes where the number of classes is merely a
function of the topology. Upon creation, a virtual circuit is
allocated a set of buffers (fixed or variable) ‘at each node.
When this set is used up, no further traffic is accepted from
that virtual circuit. We will refer to this family of schemes as
virtual circuit hop level schemes (see Section 111-E).

Many other traffic subdivisions are possible:, for example,
a traffic class may be associated with each traffic source; with
each traffic destination; or with each source-destination
node pair. Indeed, these are all legitimate and, in many re-
spects, well justified choices for a link level flow control
scheme. However, we will restrict our study to the three
schemes just mentioned, since these are the only schemes
which have been extensively analyzed in the published litera-
ture and implemented in real networks.

560 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL.. COM-28, NO. 4, APRIL 1980

Apart from traffic class distinctions, another parameter
that is often used to characterize and classify hop flow control
schemes is the degree of dynamic sharing of the store-and-
forward buffers. Here, several possibilities exist, namely:

1) fixed, uniform partitioning of buffers among buffer
classes (no sharing);

2) buffer partitioning proportional to traffic in each class
(no sharing);

3) overselling (i.e., the sum of the buffer limits, one for
each class, is larger than the total buffer pool); and

4) dynamic adjustment of buffer limits based on relative
traffic fluctuations.

The following sections discuss each hop flow control
class in more detail.

C. Channel Queue Limit Flow Control

In the channel queue limit (CQL) scheme, the traffic
classes correspond to the channel output queues, and there
are restrictions on the number of buffers each class can seize.
We may define the following versions of the CQL scheme

I) Complete Partitioning (CP)-Letting N = number of
output queues, and n j = number of packets on the ith queue
and B = buffer size, we have the following constraint:

P O I .

B
O<ni <-, Vi.

N

2)Sharing with Maximum Queues (SMXQ)-Let b,,,
be the maximum queue size allowed (where, b,,, > B/N); we
have the following constraints:

O<ni<b,,,, V i

ni<B.
i

3) Sharing with Minimum Allocation (SMA)-Let b,i, be
the minimum buffer allocation which is guaranteed to each
queue (typically, b,i, < B/N). The constraint then becomes

1 max (0, n i -bmin)< B--Nb,i,.
I

4) Sharing with Minimum Allocation and Maximum
Queue-This scheme combines 2) and 3) in that it provides for
a minimum buffer guarantee and a maximum buffer allocation
for each queue at the same time.

The above options assume that the buffer limit parameters
are fixed in time and are the same for all queues. Additional
flexibility may be introduced in these schemes by allowing
the buffer parameters to change dynamically in time and from
queue to queue based on traffic fluctuations.

Having defined a number of CQL flow control options,
we now proceed to show that this form of flow control can
eliminate the performance degradation and deadlock effects
mentioned in Section 11. Referring first to Fig. 2, we note
that in the presence of CQL flow control, the traffic compo-
nent (B, B’) will no longer be permitted to seize all the buffers

in the switch. Therefore, traffic can now flow freely from A to
A’ , and the throughput degradation effect is removed. Simi-
larly, the deadlock condition depicted in Figs. 6 and 7 cannot
occur since the buffers in node A cannot be taken over
completely by the channel (A, B) queue. Therefore, some
buffers in A will always be available to receive packets from
node B.

Some form or another of CQL flow control is found in
every network implementation. The ARPANET IMP (interface
message processor) has a shared buffer pool with minimum
allocation and maximum limit for each queue, as shown in
Fig. 12 [30] . Of the total buffer pool (typically, 40 buffers),
two buffers for input and one buffer for output are per-
manently allocated to each internode channel. Similarly,
ten buffers are permanently dedicated to the reassembly of
messages directed to the hosts. The remaining buffers are
shared among output queues and the reassembly function,
with the following restrictions: reassembly buffers <20,
output queue <8, the total store-and-forward buffers <20.

Next we proceed to the evaluation and comparison of
CQL implementations, and briefly review the main results
available in the published literature [181 , [20] . We first report
on some throughput degradation conditions observed in
absence of flow control. Fig. 13 from [181 shows through-
put performance as a function of link load for a variety of
buffer control policies. The curve labeled “unrestricted
sharing” corresponds to a system without flow control. We
notice that, for increasing input load, the throughput of the
uncontrolled system reaches a peak and then degrades asymp
totically to unity. This behavior confirms the throughput
degradation predictions made in Section 11.

Throughput degradation is easily corrected with the intro-
duction of CQL flow control, as shown by the remaining
curves in Fig. 13. The “no sharing” system (i.e., complete
partitioning of the buffer pool among the outgoing queues)
is, as expected, the most conservative and throughputwise
least efficient scheme. The best scheme is the “optimal
sharing” scheme, which corresponds to optimally reselecting
a new buffer limit for each level of traffic (i.e., dynamic
SMXQ). A heuristic approximation of the optimal scheme is
offered by the “square root scheme,” a load invariant scheme
with fixed buffer limit =BIN, where B = total number of
buffers and N = number of output channels. The square root
scheme is simpler to implement than the optimal scheme
since it does not depend on traffic load and, therefore, does
not require the reoptimization of the buffer limit values as
a function of traffic pattern changes, and yet, it was shown to
be practically as efficient as the optimal sharing for a number
of cases [181 .

Kamoun [20] used a similar switch model to investigate
the sharing with minimum allocation (SMA) scheme. The
results, obtained in a balanced load environment, show no
substantial difference between SMXQ and SMA; in fact,
neither scheme is consistently better over the entire range
of offered loads. We conjecture, however, that with strongly
unbalanced traffic SMA would exhibit better “fairness” since
SMA guarantees minimum throughput (with low delay) for
each output channel even when the shared portion of the
buffer pool is captured by a few heavily loaded queues.

GERLA AND KLEINROCK: FLOW CONTROL

INTERNODE CHANNELS

SHARED BUFFER POOL

HOST LINES

Total buffer pool = 40 buffers

1 minimum maximum
j allocation allocation

Reassembly
Internode inDut aueue , 2

10 20

Total internode queues
Internode output~’queue

20
8

(Le.. total S/F buffers) I

Fig. 12. Buffer allocation in Arpanet IMP (1972 version).

r-----l
- OPTIMAL SHARING (with maximum queues) - - - - SOUARE ROOT RULE

-. - - *e UNRESTRICTED SHARING
COMPLETE PARTITIONING

OFFERED LOAD

Fig. 13. Single switch buffer and allocation model. Throughput
versus load behavior for various buffer management schemes (un-
balanced load pattern).

Summarizing various published results, we may state that
CQL flow control is necessary to avoid throughput degrada-
tion, unfairness, and direct store-and-forward deadlocks.
Furthermore, it seems that almost any form of CQL imple-
mentation will provide the minimum required protection.
The safest scheme (for fairness reasons) seems to be the
combination of SMXQ and SMA, which imposes a maximum
and minimum limit on each queue (incidentally, this was the
scheme used in ARPANET).

D. Structured Buffer Pool (SBP) Flow Control
We have shown in the previous section that CQL flow

control eliminates direct store-and-forward deadlocks. How-
ever, there is another, more general form of deadlock which
can arise in packet networks, namely, indirect store-and-
forward deadlocks [19]. Fig. 14 illustrates a typical indirect

56 1

store-and-forward deadlock situation. Suppose that unfavor-
able traffic conditions in the ring topology shown in Fig. 14
cause .each queue to be filled with Q,,, packets, where
Q,,, is the limit imposed by the CQL strategy. Furthermore,
assume that the packets at each node are directed to a node
two or Gbre hops away (e.g., all packets queued on link
(A, B) are directed to C). In these conditions, no traffic can
move in the network since all the queues are full. Thus, we
have a deadlock even if the network is equipped with CQL
flow control (which is known to prevent direct store-and-
forward deadlocks)!

Prevention of indirect store-and-forward deadlocks is
obtained with the “structured buffer pool” strategy proposed
by Raubold et al. [37]. In this strategy, packets arriving at
each node are divided into classes according to the number
of hops they have covered. For example, packets entering a
node from the host belong to class 0 of.that node, since they
have not yet covered any hops. The highest class Hmax cor-
responds to packets that have traversed H,,, hops, where
H,,, is the maximum path length in the network (a function
of the topology and the routing algorithm). The highest
class H,,, also includes all the packets that have reached
their destinations and are therefore being reassembled into
messages before delivery to the hosts. The nodal buffer
organization reflects this class structure as shown in Fig. 15.
Each packet class has the right to use a well-defined set of
buffers. Class 0 can access only the buffers available in set 0.
Buffer set 0 is large enough to store the largest size message
entering the network. Class i + 1 can use all the buffers
available to class i , plus one additional buffer. Finally, class
Hmax can access all the buffers available to class Hmax-l,
plus a number of buffers sufficient to reassemble the largest
message to be delivered to any destination (this provision is
necessary, although not sufficient, to avoid “reassembly
deadlocks,” as will be shown in Section IV).

Under normal traffic conditions, only set 0 buffers are
used. When the load increases beyond nominal levels, buffers
fill up progressively from level 0 to level H,,,. When at a
given node the buffers at levels are full, arriving packets
which have covered <i hops are discarded. Thus, in case of
congestion, “junior” packets are dropped in the attempt
to carry “senior” packets to their destination. This is a de-
sirable property, since senior packets correspond to a higher
network resource investment.

It can easily be shown that this strategy eliminates dead-
locks of both the direct and indirect type [37]. To prove
this, we consider the “resource graph” [3] associated with
the packet switch network. In this graph, there is an arc
associated with each packet in the network. The arc originates
from the buffer currently occupied by the packet and termi-
nates in the (currently unavailable, but awaited) buffer in the
next node on the path. A deadlock occurs if and only if there
is a cycle in the graph, i.e., there is a chain of arcs which
starts from one buffer, and terminates at the same buffer.
The existence of cycles can easily be recognized in the dead-
lock situations depicted in Figs. 6 and 14.

With the structured buffer pool, however, no cycle can
occur in the resource graph since each arc starts from a buffer
of class i and points to a buffer of class i + 1 (recall that a

562 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

B

TO E

t

E

Fig. 14: Indirect .store-and-forward deadlock.

[i;:
MAX. NUMBER OF

BUFFERS AVAILABLE
Fi)R B,UFFiFl C,LASJ

- 1

BUFFERS NOT
AVAILABLE FOR
INPUT TRAFFIC

BUFFERCLASS4

BUFFER CLASS o
UNASSIGNED

BUFFERS,
AVAILABLE FOR
ALLCLASSES

I
MAX. NUMBER OF

BUFFERS AVAILABLE
FOR INPUT TRAFFIC

PACKETS

I
Fig. 15. Structured buffer pool.

packet gains seniority at each hop; an illustration of this
property is shown in Fig. 16. Thus, both direct and indirect
store-and-forward deadlocks are prevented.

The SBP method was developed by the GMD group in
Darmstadt, Germany, for implementation in GMDNET, an
experimental packet switch iletwork [37]. Before implementa-
tion, an extensive simulation effort was carried out to verify
and evaluate the performance of all the network protocols,
and of the SBP procedure in particular [13]. Early simulation
results showed that the proposed flow control scheme was
effective in eliminating deadlocks, but was not successful
in preventing throughput degradation when the offered load
exceeded the critical threshold (some SBP simulation experi-
ments with typical packet switch network topologies showed
that the throughput in heavy load conditions was four to
five times lower than the maximum throughput).

SINK B

P

1

Fig. 16: . Access to buffer classes. Example for two data streams.
Dotted area: buffers available for stream A; hatched area: buffers
available for stream B.

To correct the loss of throughput efficiency under heavy
loads, additional constraints were imposed on the number of
buffers that each traffic class could seize. The most dramatic:
improvement was obtained by limiting the number of class 0
buffers that couid be seized by input packets (i.e., packets
entering the network from external sources). In the absence
of this constraint, input packets had the tendency to monop-
olize all class 0 buffers, leaving only a “thin” buffer layer for
the transit traffic to circulate. The control of input traffic,
known as “input flow control” in GMDNET is a form of
network access flow control and will be discussed more
extensively in Section V.

Additional improvements in the SBP scheme were obtained
in the case of datagram networks, by setting a specific buffer
size constraint L(i) on each class i [13]. (In other words,
instead of having a nested buffer pool in which class i can
access all buffers available to class i - 1, plus one buffer,
a different constraint is set on each class). The constraint
L(i) was dynamically adjusted to adapt to the relative demands
of the various classes. It is interesting to note that the dead-
lock prevention property is not affected by dynamic changes
in buffer class size (as long as at least one buffer is dedicated
to each class at all times).

E. Virtual Circuit (Hop Level) Flow Control

We recall that packet switch networks can be subdivided
into two broad classes: datagram (DG) networks and virtual
circuit (VC) networks. In DG networks, each packet in a user
session is carried through the network independently of the
other packets in the same session; that is, packets in the same
session may follow different routes, and may be delivered out
of sequence to the destination. In VC networks, a physical
network path is set up for each user session and is released
when the session is terminated. Packets follow the preestab-
lished path in sequence. Sequencing and error control are
provided at each step along the path.

GERLA AND KLEINROCK: FLOW CONTROL 563

The previously mentioned flow control schemes, namely Tymnet is probably the earliest VC network developed
CQL and SBP, are applicable to both DG and VC nets. In [39]. As distinct from most VC networks, Tymnet uses a
addition, VC nets permit the application of selective flow’ “composite” packet internode protocol. This means that
control to each individual VC stream (VC flow control). data from different VC’s traveling on the same trunk can be
There are two forms of VC flow control: packed in the same envelope, for the purpose of link over-

1) hop level (or stepwise) VC flow control, which controls head reduction. Tymnet is a character-oriented network in
VC flow at each hop along the path, and is designed to,avoid the Sense that data flows on the virtual circuit in the form of
S/F buffer congestion; and characters, rather than packets (i.e., characters are assembled

2) source-sink (or end-to-end) VC flow control, whose into packets at the entry node, and are then disassembled at
function it. is‘to adjust source rate to sink rate SO as to maxi- the exit node). The character-oriented nature of Tymnet
mize VC throughput, yet avoiding sink buffer congestion. ,- implies that VC-HL buffer allocation is based on character

(VC-HL) flow control; we discuss end-to-end VC flow control “*’ In Tymnet [39], a throughput limit is computed for each
In this section we will mainly deal with VC hop level.“ (rather than packet) counts.

in more detail in Section IV.
The basic principle of operation of the VC-HL scheme

consists of setting a limit M on the maximum number of
packets for each VC stream that can be in transit at each
intermediate node. The limit M may be fixed at VC setup
time, or may be dynamically adjusted, based on load fluctua-
tions. The buffer limit M is enforced at each hop by the VC-
HL protocol, which regulates the issue of transmission
“permits” and discards packets based on buffer occupancy.

The advantage of VC-HL (over CQL and SBP) is to provide
a more efficient and prompt recovery from congestion by
selectively slowing down the VC’s directly feeding into the
congested area. By virtue of backpressure, the control then
propagates to all the sources that are contributing to the
congestion, and reduces (or stops) their inputs, leaving the
other traffic sources undisturbed. Without VC-HL flow control,
the congestion would spread gradually to a larger portion of
the network, blocking traffic sources that were not directly
responsible for the original congestion, and causing unneces-
sary throughput degradation and unfairness.

As in the case of CQL and SBP schemes, various buffer
sharing policies can be proposed. At one extreme, M buffers
can be dedicated to each VC at setup time; at the other ex-
treme, buffers may be allocated, on demand, from a common
pool (complete sharing). It is easily seen that buffer dedication
can lead to extraordinary storage overhead, since there is,
generally, no practical upper bound on the number of VC’s
that can simultaneously exist in a network; furthermore, the
traffic on each VC is generally bursty, leading to low utiliza-
tion of the reserved buffers. For these reasons, most of the
implementations employ dynamic buffer sharing.

The shared versus dedicated buffer policy also has an
impact on the deadlock prevention properties of the VC-HL
scheme. With buffer dedication, the VC-HL scheme becomes
deadlock free. This can easily be deduced by considering the
resource graph and recognizing that the graph cannot contain
loops, since virtual circuits are loopless by construction.
(For deadlock freedom, it actually suffices that at least one
buffer be reserved for each virtual circuit). If, on the other
hand, no buffer reservations are made and buffers are allocated
strictly on demand, deadlocks may occur unless additional
protection (e.g., the SBP scheme) is implemented.

In the following, we briefly describe three different versions
of VC-HL flow control implemented in existing networks,
and report on some performance results.

VC at setup time according to terminal speed, and is en-
forced all along the network path. Throughput control is
obtained by assigning a maximum buffer limit (per VC) at
each, .intermediate node and by controlling the issue of trans-
mission permits from node to node based on the current
buffer allocation. Periodically (every half second), each node
sends a backpressure vector to its neighbors, containing one
bit for each virtual circuit that traverses it. If the number of
currently buffered characters for a given VC exceeds the
maximum allocation (e.g., for low speed terminals-10 to 30
cps-the allocation is 32 characters), the backpressure bit is
set to zero; otherwise the bit is set to one. On the transmitting
side, each VC is associated with a counter which is initialized
to the maximum buffer limit and is decremented by one for
each character transmitted. Transmission stops on a particular
VC when the corresponding counter is reduced to zero. Upon
reception of a backpressure bit = 1, the counter is reset to
its initial value and transmission can resume.

The effect of backpressure from an individual hop back
along the VC in Tymnet constitutes a good example of the
“hybrid” character of many practical flow control imple-
mentations, since we see here a mixture of hop level and
transport level flow control. This was pointed out earlier in
connection with Fig. 10, and we shall encounter other ex-
amples as we proceed.

Transpac, the French public data network, is a VC net-
work which uses X.25 as an internode protocol [42]. One of
the distinguishing features of Transpac is the use of the
throughput class concept in X.25 for internal flow and con-
gestion control. Each VC call request carries a throughput
class declaration which corresponds to the maximum (in-
stantaneous) data rate that the user will ever attempt to
present to that VC. Each node keeps track of the aggregate
declared throughput (which represents the worst case situa-
tion), and at the same time, monitors actual throughput
(typically, much lower than the declared throughput) and
average buffer utilization. Based on the ratio of actual to
declared throughput, the node may decide to ouerselZ capacity,
i.e., it will attempt to carry a declared throughput volume
higher than trunk capacity. Clearly, overselling implies that
input rates may temporarily exceed trunk capacities, so that
the network must be prepared to exercise flow control.
Packet buffers are dynamically allocated to VC’s based on
demand (complete sharing), but thresholds are set on individual
VC allocations as well as on overall buffer pool utilization.

564 IEEE TRANSACTIONS ON COMMUNICATIONS. VOL. COM-28, NO. 4, APRIL 1980

Of particular interest is the impact of overall buffer pool
thresholds on VC-HL. Three threshold levels [So, S1, and
SZ (where SO < S1 < S,)] are defined and are used in the
following way:

1) S o : do not accept new VC call requests;
2) SI : slow down the flow on current VC’s (by delaying

3) Sz : selectively disconnect existing VC’s.
The threshold levels So, SI, and S2 are dynamically

evaluated as a function of declared throughput, measured
throughput and current buffer utilization.

Another example of a VC network is offered by GMDNET
[13]. As we mentioned before, GMDNET applies SBP flow
control. In addition, it applies I-control (individual control)
on each virtual circuit. I-control consists of two components:
end-to-end flow control and hop level flow control. End-to-
end and hop level flow control are implemented using variable
size windows PULE and PULL, respectively (PUL = packet
underway limit). The window is defined as the maximum
number of packets that a sender is allowed to transmit before
receiving an ACK, or permit [5] . The windows PULE and
PULL are dynamically adjusted based on sink congestion and
intermediate node congestion, respectively; their values may
vary within predefined ranges (1 < PULE < WE; 1 < PULL <
W L) [37] , [13] . The buffer pool is completely shareable,
without specific reservations for individual VC’s.

Simulation results on the performance of the I-control
scheme lead to the following important conclusions.

1) I-control alone cannot prevent throughput degradation,
unfairness, and deadlocks. Experimental results clearly show
that an I-controlled network without SBP becomes deadlocked
immediately after the applied load exceeds the critical value
(this confirms our prediction that VC flow control without
specific buffer reservations for individual VC’s cannot prevent
deadlocks).
2) The end-to-end component of I-control is very effective

in preventing network congestion in the case of source rates
exceeding sink rates. Without I-control (i.e., the SBP control
alone), a five-fold throughput degradation was observed in a
typical network experiment.

the return of ACK’s at the VC level); and

IV. ENTRY-TO-EXIT FLOW CONTROL

The main objective of the entry-to-exit (ETE) flow control
is to prevent buffer congestion at the exit node due to the
fact that remote sources are sending traffic at a higher rate
than can be accepted by the hosts (or terminals) fed by the
exit node. The cause of the bottleneck could be either the
overload of the local lines connecting the exit node to the
hosts, or the slow acceptance rate of the hosts. The problem
of congestion prevention at the exit node becomes more
complex when this node must also reassemble packets into
messages, and/or resequence messages before delivery to the
host. In fact, reassembly and resequence deadlocks may occur,
which require special prevention measures.

In order to understand how reassembly deadlocks can be
generated, let us cortsider the network path shown in Fig.

NODE 1 NODE 2 NODE 3 bOST 1

- A,- A , A,

Fig. 17. Reassembly buffer deadlock.

HOST 2 NODE 1 NODE 2 NODE 3 nos1 1

Fig. 18. Resequence deadlock.

17, where three store-and-forward nodes (node 1, node 2, and
node 3, respectively) relay traffic directed to host 1. In the
situation depicted in Fig. 17, three multipacket messages
A , B, and C are in transit towards host 1. Without loss of
generality we assume that the message size is +I packets and
that 4 buffers are dedicated to messages being assembled at
a node; furthermore, a channel queue limit Q,,, = 4 is set
on each trunk queue, for hop level flow control. We note
from Figure 17 that message A (which has siezed all four
reassembly buffers at node 3) cannot be delivered to the
host since packet A , is missing. Packet A z , on the other
hand, cannot be forwarded to node 2 since the queue at
node 2 is full. The node 2 queue, in turn, cannot advance
until reassembly space becomes available in node 3 for B
or C messages. Deadlock!

A very similar order of events leads to resequence dead-
locks as shown in Fig. 18. Assume that a sequence of single
packet messages A , B, K originating from host 2 and
directed to host 1 is traveling through a three-node network.
If messages must be delivered in sequence, messages B, C,
D, E in node 3 cannot be transmitted, to host 1 until mes-
sage A is received at node 3. However, due to store-and-
forward buffer unavailability in node 2, message A cannot
reach node 3. Deadlock!

Various schemes can be used to prevent these types of
deadlocks. In the ARPANET, for example, reassembly dead-
locks are avoided by requiring a reassembly buffer reservation
for each multipacket message entering the network; resequence
deadlocks are avoided by discarding out-of-sequence messages
at the destination. Other networks (e.g., Telenet) have suf-
ficient nodal storage to permit out-of-sequence messages to
be accepted at a destination node with the understanding
that these may be discarded later if storage congestion occurs;
again, the existence of a source copy saves the day. These
and other schemes are discussed in more detail in the following
sections.

While the main objective of ETE controls is to protect
the exit node from congestion, an important byproduct is
the prevention of global (i.e., internal) congestion. Virtually
all ETE controls are based on a window scheme that allows
only up to W sequential messages to be outstanding in the
network before an end-to-end ACK is received. If the net-
work becomes congested (this may occur independently of
destination node congestion), messages and ACK’s incur
high end-to-end delays. These delays, combined with the

GERLA AND KLEINROCK: FLOW CONTROL 565

restriction on the total number of outstanding messages, ef-
fectively contribute to reduce the input rate of new packets
into the network.

Several varieties of ETE flow control schemes have been
proposed and implemented. We first describe four representa-
tive examples, and then briefly review some analytical and
simulation models for the performance evaluation and compar-
ison of such schemes.

A . ARPANET RFNMand Reassembly Scheme

ETE flow control in ARPANET is exercised on a hos&pair
basis [30], [23]. Specifically, all messages traveling from
the same source host to the same destination host are carried
on the same logical “pipe.” Each pipe is individually flow
controlled by a window mechanism. An independent message
number sequence is maintained for each pipe. Numbers are
sequentially assigned to messages flowing on the pipe, and
are checked at the destination for sequencing and duplicate
detection purposes. Both the source and the destination
keep a small window w (presently, w = 8) of currently valid
message numbers. Messages arriving at the destination with
out-of-range numbers are discarded. Messages arriving out of
order are discarded since storing them (while waiting for the
missing message) may lead to potential resequence deadlocks.
Correctly received messages are acknowledged with short
ETE control messages called RFNM’s (ready for next mes-
sage). Upon receipt of an RFNM, the sending end of the pipe
advances its transmission window, accordingly.

RFNM’s are also used for error control. If an RFNM is
not received after a specified time out (presently about 30 s),
the source IMP sends a control message to the destination
inquiring about the possiblity of an incomplete transmission.
This technique is necessary to keep source and destination
message numbers synchronized and also to request a retrans-
mission from the host in the case of message loss.

The window and message numbering mechanisms described
so far support ETE flow control, sequencing and error control
functions in the ARPANET. A separate mechanism, known as
reassembly buffer allocation [30], is used to prevent reas-
sembly deadlocks. Each multipacket message must secure a
reassembly buffer allocation at the destination node -before
transmission. This is accomplished by sending a reservation
message called a REQALL (request for allocation) to the
destination and waiting for an ALL (allocation) message
from the destination before attempting transmission. To
reduce delay (and, therefore, increase throughput) of steady
multipacket message flow between the same source-destina-
tion pair, ALL messages are automatically piggybacked on
RFNM’s, thus eliminating the reservation delay for all mes-
sages after the first one. If a pending allocation at the source
node is not claimed within a given time-out (250 ms), it is
returned to the destination with a “giveback” message. Single
packet messages are transmitted to their destinations without
buffer reservation. However, if upon arrival at the destination,
all the reassembly buffers are full, the single packet message
is discarded and a copy is retransmitted from the source IMP

after an explicit buffer reservation has been obtained. Some
pitfalls inherent in such schemes are described in [23].

B. SNA Virtual Route Pacing Scheme

Th@BM systems network architecture (SNA) is an archi-
tecture aimed at providing distributed communications and
distributed processing capabilities between IBM systems [151,
[16] . SNA was first announced in 1974. Since then, the
original set of functions which supported single rooted net-
works (i.e., single host) have been enhanced to suppoft
multiple-domain (i.e., multiple host) networking. In this
paper, we refer to SNA release 4.2 [161 .

SNA devices can be subdivided into four main categories:
host computers (e.g., system/370), communications control-
lers (e.g., 3704 and 3705), terminal cluster controllers, and
terminal devices (e.g., TTY’s, CRT’s, readers, and printers).
Distributed communications with full routing, flow control,
and global addressing capabilities are provided only on store-
and-forward networks interconnecting host computers and
communication controllers. These nodes are called subarea
nodes in SNA. Terminals and terminal cluster controllers
are connected into this high level at these subarea nodes,
which provide the necessary boundary functions (e.g., global/
local address conversion, etc.). Thus, for purposes of this
section, SNA can be viewed as the usual two-level network
architecture, with terminals and terminal cluster controllers
at the lower level, and hosts and communications controllers
at the higher level.

SNA is essentially a virtual circuit network, in the sense
that each user session is associated with a physical route at
session setup time. The routing policy is a static, multipath
policy which maintains up to eight distinct routes between
each source-destination pair in the high-level network (i.e.,
between subarea nodes). These routes are called E R s (ex-
plicit routes), to distinguish them from V R s (virtual routes)
defined below. ER’s are defined as an ordered sequence of
network trunks, and are uniquely identified by ER numbers.
When a failure is detected on an ER currently being used,
the next ER on the list is then “switched in.” One difficulty
here is that the list of E R s must be established by the net-
work designer each time the network topology is changed.

Next, virtual routes (VRs) are defined between each source-
destination node pair of the high level network. A VR is
essentially a virtual pipe which is constructed on top of an
ER and is subject to flow control. Three sets of VR’s, each
with a different level of priority are maintained between each
subarea node pair. Each set may consist of up to eight VR’s,
thus allowing for up to 24 VR’s between each high level
network node pair. Active VR’s are identified by VR numbers
and are stored in lists at each node.

At setup time, the entry node scans the VR list and assigns
the user session to the first available virtual route of desired
priority. Several user sessions may be multiplexed on the
same VR. In turn, several VR’s may be multiplexed on the
same ER. Finally, several ER’s can be multiplexed on the
same trunk.

566 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

The rationale for the distinction between virtual routes
and explicit routes (a unique SNA feature among all VC
networks, which typically associate a virtual route with a
fixed path) is to “...insulate the virtual route layer from the
physical configuration” [161. As a consequence, user packets
are driven through the network using the ER ID number,
while the VR ID number needs to be checked only at the
endpoints of the path. This fe3ture considerably reduces
storage and processing overhead with respect to conventional
VC schemes, which typically require large maps at each
intermediate node to store the information relative to all
virtual circuits traversing that node.

In the high-level network, flow control is applied inde-
pendently to each VR from entry to exit node. This scheme,
known as VR pacing is actually a combination of ETE and
hop level flow control. It is based on a window mechanism,
in which the entry node must request (and obtain) permis-
sion from the exit node before sending. a new group of k
packets, where k = window size. The destination may grant
(or delay) such permission depending on local buffer avail-
ability. The window size k varies from h to 3h, where h is
the path hop length. The value of k is dynamically adjusted
not only by the exit node, but also by any intermediate node
along the path on the basis of its buffer availability [l] .
The fact that both the end node and the intermediate nodes
can “modulate” the window size k makes VR pacing a hybrid
ETE and hop flow control scheme.

In addition to VR-pacing control, which operates between
subarea nodes, the SNA architecture provides also for session
level pacing which, for terminals, extends beyond subarea
nodes and individually flow controls each user session between
terminal and host - computer. Session pacing is discussed in
Section VI. ’

C. GMD Individual Flow Control
In GMDNET, entry-to-exit flow control is exercised indi-

vidually on each virtual circuit, hence the name of individual
flow control assigned to the scheme [37]. We recall that
GMDNET is a VC network in which a fixed route is assigned
to each user session at session setup time.

The main purpose of entry-to-exit flow control in GMDNET
is to protect the exit node from overflow caused by low sink
rates. When the source host rate exceeds the sink host rate,
the flow control mechanism intervenes to slow down inputs
from the source host into the entry node. This is achieved
by maintaining a window of outstanding packets between
entry and exit node for each virtual circuit. The window must
be large enough to permit each virtual circuit to efficiently
utilize the bandwidth available on the path. GMD simulation
experiments have shown that w = h + 1 (where h = hop
length of the path) is a satisfactory choice under nominal
load conditions. Window size can be reduced if the sink is
slow in accepting packets. More precisely, when for a given
VC the queue waiting to be transferred from exit node to sink
reaches the value w , further arrivals to the exit node within
that VC are discarded and a negative ACK is returned to the
source node. Each negative ACK causes a window size reduc-
tion of 1 at the source node, until the minimum window size

w = 1 is reached. Each positive ACK, on the other hand,
increases window size by 1, until the maximum window
size w = h + 1 is reached. In this way, window size is dy-
namically controlled in the range 1 to h + 1 by positive and
negative acknowledgments [37].

In addition to the entry-to-exit flow control, each hop of
the virtual circuit is also independently flow controlled (see
Section 111). The two layers of flow control, entry-to-exit and
hop, are logically separated one from the other, in that the
ETE window is controlled by exit buffer occupancy, while
hop window is controlled by intermediate node congestion.

Packets within the same virtual circuit must be delivered
to the host in sequence, and in case of multipacket messages,
must be reassembled before delivery to the host. Fixed path
routing and link level sequencing imply that packets arrive
at their destination in sequence. This sequencing property,
and the fact that a number of buffers sufficient to reassemble
the largest size packet is permanently dedicated to traffic
leaving the network, preclude the possibility of reassembly
deadlocks and eliminate the need for reassembly buffer
allocation schemes of the type implemented in ARPANET.

D. Datapac Virtual Circuit Flow Control

The Canadian public data network, Datapac, implemented
with the Northern Telecom SL-10 Packet Switching System
provides virtual circuit services using an internal transport
protocol built on top of a datagram subnetwork [28]. Flow
control is exercised from entry to exit node on a virtual
circuit basis, although no physical path is actually assigned to
each virtual circuit, as was the case with SNA and GMDNET.
The absence of a fixed path leads to some complications
in the resequencing and loss recovery procedures, which will
soon be discussed.

In Datapac, a virtual circuit is provided between the two
endpoints of each user session. The virtual circuit is imple-
mented as the concatenation of three protocol segments: a
packet level X.25 protocol from the source device (i.e., data
terminating equipment or DTE) to entry node (i.e., data
communications equipment or DCE), an internal protocol
from entry DCE to exit DCE, and a packet level X.25 proto-
col from exit node (DCE) to destination node (DTE). Each
one of these protocol segments is flow controlled by a window
mechanism. Of particular interest to us is the fact that window
controls on these three segments are synchronized so as to
provide a means of matching source DTE transmission rate
with destination DTE acceptance rate. Window control syn-
chronization is achieved by withholding the return of ACK’s
on a window if the downstream window is full.

As an example, let us assume that all windows are of size
w = 3, and that the window between entry and exit DCE is
full (Le., there are three outstanding packets). The next packet
arriving from the source DTE to the entry DCE will be ac-
cepted (assuming buffer space is available), but will not be
immediately acknowledged; rather-, the ACK will be withheld
until an ACK from the exit DCE is received, thus opening up
the downstream window [28].

Within the concatenated window mechanism the entry-to-
exit flow control serves the function of promptly reflecting

GERLA AND KLEINKOCK: FLOW CONTROL

back to the source an exit segment congestion situation by
withholding ACK’s. Recall that in GMDNET the entry-to-
exit flow control provided a similar service by dynamically
adjusting the window with positive or negative ACK’s. In
Datapac, things are complicated, however, by the fact that the
window mechanism is used not only for flow control, but also
for sequencing, packet loss recovery, and duplicate detection.
These latter functions are not required in the GMDNET,
since sequencing is enforced there by the fixed path routing
policy, and packet loss could occur only if a node along the
path failed, in which case the virtual circuit would be auto-
matically reinitialized.

The use of window ACK’s for loss recovery in Datapac
leads to the following problem. If the exit DCE does not re-
turn to the entry DCE an ACK for a correctly received
packet (because the exit segment is congested), the entry
DCE will retransmit the packet after a time-out, under the
assumption that the packet was lost (or was dropped by the
exit DCE for lack of resequence space). If no ACK is received
after a specified number of retransmissions, the entry DCE
will clear the virtual circuit,. In order to minimize the genera-
tion of duplicate packets, the value of time-out must be
carefully selected as a function of window size and other
network parameters.

E. Perfomance Models

The great majority of entry-to-exit flow control mech-
anisms are based on the window scheme, Critical parameters
in the window implementation are the size of the window,
and if error and loss recovery are to be provided, the retrans-
mission time-out interval. Several analytic and simulation
models have been developed recently to investigate the impact
of these parameters on throughput and delay performance.
This section briefly surveys some of the most significant
contributions in this area.

We start with the Kleinrock and Kermani model of a single
source-to-destination stream flow controlled by a window
mechanism [26]. The network entry-to-exit delay is simplified
as an M/M/l queue delay, and the round trip delay therefore
follows an Erlang-2 distribution. (This approximation is
supported by simulation experiments showing that more
accurate delay assumptions do not significantly change the
nature of the results.) The exit node has finite storage and
delivers packets to the destination host on a finite capacity
channel. Consequently, the exit node may occasionally over-
flow and drop packets. To provide for transmission integrity,
the entry node will retransmit an unacknowledged packet
after a time-out interval. This simplified window model is
solved analytically, yielding the optimal (i.e., minimum
delay) window size and time-out interval for a given through-
put requirement and destination buffer storage size.

In a subsequent paper [22], the same authors propose an
adaptive policy (the “look-ahead” policy) for the dynamic
adjustment of window size to time-varying traffic rate. In the
proposed policy, the window size is dynamically controlled
by the queue size at the exit node. Numerical results show
that the delay versus throughput performance of the adapt-
ively controlled scheme is somewhat superior to the perform-

567

ance of a scheme operated under static control, in which the
window is adjusted in accordance with the traffic volume.
These .results are very encouraging, and are consistent with

.experiments on dynamic window control carried
inode networks [1] , [131 .

The models in [26], [22] approximate the network as a
single queue and therefore do not offer insight into the de-
pendence of window size w on the number of intermediate
hops. This issue is addressed by a simple multihop model
developed by Kleinrock in [24]. In this model a packet
stream from a single destination is transmitted across the
network on a k-hop network path. Infinite buffer storage, and
negligible error rates are assumed on each hop. The stream
is flow controlled by a window mechanism. In this model,
as the window size w increases, the end-to-end delay grows
without limit while the throughput asymptotically reaches
the path capacity.. In order to find a meaningful criterion for
the optimization of w, the concept of “power” as defined
in Section 11-F is used. We find that power is optimized by
w = k. This implies that, at optimum, there should be on the
average one packet in each intermediate queue. This result
agrees with out intuition that the “entry-to-exit pipe should
be kept full (in fact, just full)” for satisfactory performance.
The general validity of this result is confirmed by actual
window implementations. In fact, the SNA pacing scheme
allows the window to dynamically vary from h to 3h, where
h = number of intermediate hops. Similarly, the GMD in-
dividual flow control scheme uses a maximum window of
h S 1.

The main limitation of the two previous models is the
single source, single destination traffic assumption which
excludes interference at a given node by other traffic tra-
versing it. The model by Pennotti and Schwartz [32] includes
the effect of interference in an approximate fashion in that
it represents a virtual link situation in which end-to-end link
traffic flowing on a multihop path must compete at each
hop with external traffic. This is essentially a “one hop”
interference model in which some external traffic h is injected
into one node along the path and is transmitted to the next
node on the path, where it then is removed from the net-
work. The purpose of this study is to evaluate the possible
path congestion caused by an increase in the virtual link
rate ho, both with and without flow control. Congestion is
defined as the relative average increase in time delay expe-
rienced by external users due to an increase in ho, taking
X0 = 0 as a reference. Without flow control, congestion
rapidly grows to infinity even for moderate values of Ao. By
introducing end-to-end window control which limits to w the
number of packets outstanding on the virtual link at any
one time, congestion can be bounded for any value of ho.
The value of the upper bound varies with w, and decreases
for decreasing w, as expected.

As an alternative to window flow control, hop flow control
was also implemented in the Pennotti and Schwartz model
by setting a limit on the number of link packets that would
be stored at each intermediate node [32]. This scheme ex-
hibited essentially the same performance as the window
scheme. The above experiments show that flow control

568 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

(either window or hop) can be used effectively to maintain
fairness in a multiuser environment with conflicting require-
ments; that is, by adjusting the window parameter w, one can
balance the relative user throughputs as desired.

The previously mentioned model offers some insight into
multiuser flow control, but suffers from the limitation that
only one virtual circuit can be flow controlled at a time,
the remaining traffic components being kept constant. To
remove this limitation, a number of multiple source, multiple
destination models with selectively controlled user pairs have
been developed. These models combine ETE flow control
with network access flow control, and therefore may be
regarded as hybrid models. Wong and Unsoy analyze a simple
5-node network to which individual entry-to-exit window
control as well as isarithmic control are applied [41]. The
isarithmic scheme is a network access flow control scheme
which controls the total number of packets allowed in the
entire network (see Section V for additional details). The
major finding of this study is the fact that isarithmic control
alone is not enough to guarantee efficient network operation.
In fact, under some unfavorable traffic situations, one node
pair may capture most of the permits, starving other pairs
and leading to unfairness and to overall performance degrada-
tion. Similar results were found by Price in a series of simula-
tion experiments [36]. The problem is corrected by intro-
ducing individual entry-to-exit flow controls in addition
to isarithmic control.

The exact analysis of multinode networks with individually
controlled node pairs becomes impractical for topologies
with more than five to six nodes because of the rapidly in-
creasing computational complexity of exact solution tech-
niques [41]. To circumvent this problem, Reiser recently
proposed an approximate solution technique based on a mean
value analysis which is computationally affordable even for
large networks, and which reaches a typical accuracy of 5
percent in throughput and 10 percent in delay [38]. With this
technique it is now possible to analyze the interaction of
various flow control schemes in a much more realistic environ-
ment (i.e., large networks; varied traffic patterns) than was
possible with previous methods. Important design problems
such as the optimization of window parameters for all source-
destination pairs in order to maximize network throughput
(within given fairness constraints), now become approachable.

In spite of the previously mentioned advances in computa-
tional solution techniques, some window flow control issues
are still too complex to be attached analytically. For example,
the dynamic control of window size in a multinode network
is not amenable to a network-of-queues model even with the
approximate solution methods. In these cases, simulation is
still the leading performance evaluation tool [13], [l] , [36].

V. NETWORK ACCESS FLOW CONTROL

A. Objective
The objective of network access (NA) flow control is to

throttle external inputs based on measurements of internal
network congestion. Congestion measures may be local (e.&
buffer occupancy in the entry mode), global (e& total

number of buffers available in the entire network), or selective
(e.g., congestion of the path(s) leading to a given destination).
The congestion condition is determined at (or is reported to)
the network access points and is used to regulate the access
of external traffic into the network.

NA fiow control differs from LL and ETE flow control
in that it throttles external traffic to prevent overall internal
buffer congestion, while LL flow control limits access to a
specific store-and-forward node to prevent local congestion
and store-and-forward deadlocks, and ETE flow control
limits the flow between a specific source-destination pair to
prevent congestion and reassembly buffer deadlocks at’ the
destination. As we mentioned earlier, however,’ both LL and
ETE schemes indirectly provide some form of NA flow control
by reporting an internal network congestion condition back
to the access point either via the backpressure mechanism
(LL scheme), or via the credit slowdown caused by large
internal delays (ETE scheme).

Three NA flow control implementations will be discussed:
the isarithmic scheme, a global congestion prevention scheme
based on the circulation of a fixed number of permits [8] ;
the input buffer limit scheme, a local congestion scheme
which sets a limit on the number of input packets stored
at each node [27], [13] ; and the choke packet scheme, a
selective congestion scheme based on the delivery of special
control packets of that name from the congested node back
to the traffic sources [29].

B. The Isarithmic Scheme

Since the primary cause of network congestion is the
excessive number of packets stored in the network, an intui-
tively sound congestion prevention principle consists of
setting a limit on the total number of packets that can circu-
late in the network at any one time. An implementation of
this principle is offered by the Isarithmic scheme proposed
for the National Physical Laboratories network [8], [35].

The isarithmic scheme is based on the concept of a “permit,”
i.e., a ticket that permits a packet to travel from the entry
point to the desired destination. Under this concept, the
network is initially provided with a number of permits, several
held in store at each node. As traffic is offered by a host to
the network, each packet must secure a permit before admis-
sion to the high level node is allowed. Each accepted packet
causes a reduction of one in the store of permits available at
the accepting node. The accepted data packet is able to
traverse the network, under the control of node and link
protocols, until its destination node is reached. When the
packet is handed over to the destination subscriber, the
permit which has accompanied it during its journey becomes
free and an attempt is made to add it to the permit store of
the node in which it now finds itself.

In order to achieve a viable system in which permits do not
accumulate in certain parts of the network at the expense of
other parts, it is necessary to place a limit on the number of
permits that can be held in store by each node. If then, be-
cause of this limit, a newly freed permit cannot be accom-
modated at a node (overflow permit), it must be sent else-
where. The normal method of carrying the permit in these

GERLA AND KLEINROCK: FLOW CONTROL 569

circumstances is to “piggyback” it on other traffic, be this
data or control. Only in the absence of other traffic need
a special permit-carrying packet be generated.

A simulation program was developed by NPL to evaluate
the performance of the isarithmic scheme in various network
configurations and in the presence of different network
protocols [35]. The main conclusion of these simulation
studies was that the isarithmic scheme is a simple congestion
prevention mechanism which performs well in uniform traffic
pattern situations, but may lead to unnecessary throughput
restrictions, and therefore, to poor performance in the case of
nonuniform, time-varying traffic patterns. In particular, in
the presence of high bandwidth data transfers, there is the
possibility that permits are not returned to the traffic sources
rapidly enough to fully utilize network capacity (the “permit
starvation” problem). This would be the case when the desti-
nation node redistributes the overflow permits randomly in
the network. If, on the other hand, the destination system-
atically returns all the permits to the source, the source-
destination pair may end up capturing most of the network
permits, thus causing unfairness. Tradeoffs between different
permit distribution schemes are investigated with an analytical
model in [41]. Finally, a delicate problem in isarithmic
control is the bookkeeping of permits, to avoid unauthorized
generation or disappearance of permits.

In spite of the above limitations, the isarithmic scheme
proved to be very effective in weakly controlled networks
(namely, networks without hop level flow control), eliminating
congestion and deadlocks that had occurred without flow
control. Some simulation experiments were also carried out
on networks with hop level flow control (specifically CQL),
and with a simple form of local access control (one buffer
on each output queue was reserved for store-and-forward
traffic). For this class of networks (called strongly controlled
networks), it was found that the network performance did not
show congestion tendencies even without isarithmic control
in the case of a fixed routing discipline. When the fixed
discipline was replaced with an adaptive routing discipline,
it was found that the network would become easily congested
since the simple form of network access control implemented
would not prevent external traffic from flooding all the
queues in the entry node. Again, the introduction .of the
isarithmic scheme was successful in eliminating the congestion
problem for the adaptive routing case [36] .

Critical parameters in the isarithmic scheme design are the
total number of permits P in the network and the maximum
number of permits L that can be accumulated at each node
(permit queue). Experimental results show that optimal
performance is achieved for P = 3N, where N = total number
of nodes,and L = 3. An excessive number of permits in the
network would lead to congestion. An excessive value of
L would lead to unfairness, accumulation of permits at a few
nodes, and throughput starvation at the others.

C. Input Buffer Limit Scheme

The input buffer limit (IBL) scheme differentiates between
input traffic (i.e., traffic from external sources) and transit

traffic, and throttles the input traffic based on buffer occu-
pancy at the entry node. IBL is a local network access method
since it monitors local congestion at the entry node, rather
than global congestion as does the isarithmic scheme. Entry
node congestion, on the other hand, is often a good indicator
of glosal congestion because the well known backpressure
effect will have propagated internal congestion conditions
back to the traffic sources.

The function of IBL controls is to block input traffic when
certain buffer utilization thresholds are reached in the entry
node. This flow control approach clearly favors transit traffic
over input traffic. Intuitively, this is a desirable property
since a number of network resources have already been in-
vested in transit traffic. This intuitive argument is supported
by a number of analytical and simulation experiments proving
the effectiveness of the IBL scheme.

Many versions of IBL control can be proposed. Here, we
describe and compare four different implementations that
have been experimentally evaluated.

The term input buffer limit scheme refers to a scheme
restricting the number of buffers made available to input
traffic and was first introduced by the GMD research group
[37], [13]. The scheme proposed for GMDNET is a by-
product of the nested buffer class structure used to allocate
buffers to different classes of traffic. We recall from Section
111-D that the ith traffic class consists of all the packets that
have already covered i hops. Input traffic is assigned to class
zero (zero hops covered). Traffic class zero is entitled to use
buffer class zero, which is a subset of the nodal buffer pool
(in general, class i is entitled to use all buffer classes G i). Thus,
input packets are discarded when class zero buffers are full.
The size of buffer class zero (referred to as input buffer
limit) was found to have a significant impact on throughput
performance under heavy loads. Simulation experiments
indicate that for a given topology and traffic pattern there
is an optimal input buffer limit which maximizes throughput
for heavy offered load. The use of lower or higher limits
leads to a substantial drop in throughput [131 .

A version of IBL control that is simpler than the GMD
version was proposed by Lam [27] and analytically evaluated
in an elegant model. Only two classes of traffic-input and
transit-are considered in this proposal. Letting NT be the
total number of buffers in the node and NI the input buffer
limit (where NI < NT), the following constraints are imposed
at each node:

1) number of input packets G V I , and
2) number of transit packets G V T

The analytical results confirm simulation results independ-
ently obtained by the GMD group. There is an optimal ratio
NI/NT, which maximizes throughput for heavy offered load,
as shown in Fig. 19. A good heuristic choice forNI/NT is the
ratio between input message throughput and total message
throughput at a node, As shown in the figure, throughput
performance does not change significantly even for relatively
large variations of the ratio NI/NT around the optimal value,
thus implying that the IBL scheme is robust to external
perturbations such as traffic fluctuations and topology changes.
One shortcoming of this model is that all nodes in the net

570 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

INPUT BUFFER LIMIT N,! NT

Fig. 19. Input buffer limit scheme: throughput versus buffer limita-
tion for heavy offered load.

are assumed to have the same blocking probability, a some-
what unrealistic assumption.

A scheme similar to Lam’s IBL scheme had been earlier
proposed by Price 1351. In order to prevent input traffic
from monopolizing the entire buffer pool, one buffer in each
output queue was reserved for transit traffic. This is essentially
equivalent to setting an input buffer limit NI = NT-C, where
C = number of output channels. Simulation studies showed
that this simple network access control based on source
buffer utilization was quite successful in single level networks.

Kamoun [21] proposes yet another version of IBL control,
in which an input packet is discarded if the total number of
packets in the entry node exceeds a given threshold (whereas
in Lam’s scheme an input packet is discarded when’ the number
of input packets exceeds a given threshold). Transit packets,
instead, can freely claim all the buffers. The scheme is called
drop-and-throttle flow control (DTFC) policy since a transit

while all previous schemes assumed link level retransmission of
overflow packets (retransmit model). The DTFC scheme
was analyzed using a network of queues model [21]. The
results, shown in Fig. 20, clearly indicate that there is an
optimal threshold value L which maximizes throughput for
each value of offered load. Below the threshold, the network
is “starved”; above the threshold, the network is congested.
A similar scheme, referred to as the free flow scheme, is
described and analyzed by Schwartz and Saad in [41]. Pre-
liminary results indicate that, while free flow and IBL through-
put performances are compatible, the free flow scheme offers
substantial delay improvements.

We have pointed out that IBL control prevents congestion
by favoring transit traffic over input traffic. In most cases
(indeed, in all cases analyzed in the previously referenced
studies), this favoritism leads to throughput improvements.
In some cases, however, unfairness may result. Consider,
for example, the 4-node network shown in Fig. 21. In this
network, two file transfers, A to A’ and B to B‘, respectively,
are simultaneously competing for trunk (2, 3). Node 2 sees
traffic A as transit traffic, so it gives it preferential treatment
over traffic from B. Consequently, the A-A’ packet stream
can acquire more buffers in node 2, and thus achieve better
throughput performance than the B-B‘ stream. The unfairness

packet a r r iv ing a t a fu l l node is d r o p p e d a n d lost (loss model) ;

I I I I l l I

1 -

L = 12 10 8 4

.8

I-
3 n 3 .6
3

B
I
I- .4

.2
L = 2 0 19 18 16

.o
.4 .5 1 2 3 4 5 10

OFFERED LOAD

Fig. 20. Throughput versus load for a 121-node network for drop-
and-throttle flow control.

- - -+ _ _ _ _ _ _ + _ _ _ _ _ _ +---

Fig. 21. Unfairness condition produced by input buffer limit and
drop-and-throttle flow control schemes.

is particularly dramatic when DTFC is used. With the DTFC
policy, if the A-packet queue in node. 2 exceeds the buffer
threshold (this could easily occur if C2, < C1 2), B-packets
cannot be accepted by node 2. Consequently B-traffic is
completely shut off until the A-A’ file transfer is completed.

D. Choke Packet Scheme
The choke packet (CP) scheme, proposed for the Cyclades

network [29], is based on the notion of trunk and path
congestion. A trunk (link) is defined to be congested if its
utilization (measured over an appropriate history window
with exponential averaging) exceeds a given threshold (e&,
80 percent). A path is congested if any of its trunks are
congested. Path congestion information is propagated in the
network together with routing information and thus, each
node knows hop distance and congestion status of the shortest
path to each destination.

When a node receives a packet directed to a destination
whose path is congested it takes the following actions.

1) If the packet is an input packet (i.e., it comes directly
from a host), then the packet is dropped.

2) If the packet is a transit packet, it is forwarded on the
path; but a “choke” packet (namely, a small control packet)
is sent back to the source node informing it that the path to
that destination is congested and instructing it to block any sub-
sequent input packets to this destination. The path the to
destination is gradually unblocked if no choke packets are
received during a specified time interval.

This is a greatly simplified description of the CP scheme.
Several other features (which are essential to make the scheme
workable) are discussed in [29] .

GERLA AND KLEINROCK: FLOW CONTROL

It is clear that the CP scheme attempts to favor transit
traffic over input traffic, much in the same way as the
IBL scheme did. The basic difference between the two
schemes is the fact that IBL uses a local congestion measure,
namely, the entry node buffer occupancy, to indiscriminately
control all input traffic; whereas, CP uses a path congestion
measure to exercise selective flow control on input traffic
directed to different destinations.

Simulation experiments based on the Cigale network
topology are given in Fig. 22 and show that the CP scheme
can introduce substantial throughput improvements (with.
respect to the uncontrolled case) in sustained load conditions,
asymptotically achieving the ideal performance for infinite
load [29].

VI. TRANSPORT LEVEL FLOW CONTROL

A. Objectives

A transport protocol is a set of rules that govern the trans-
fer of control and data between user processes across the
network. The main functions of this protocol are the efficient
and reliable transmission of messages within each user session
(including packetization, reassembly, resequencing, recovery
from loss, elimination of duplicates) and the efficient sharing
of common network resources by several user sessions (obtained
by multiplexing many user connections on the same physical
path and by maintaining priorities between different sessions
to reflect the relative urgency).

For efficient and reliable reassembly of messages at the
destination host (or more generally, the DTE), the transport
protocol must ensure that messages arriving at the destination
DTE are provided adequate buffering. The transport protocol
function which prevents destination buffer congestion and
overflow is known as transport level flow control. Generally,
this level of flow control is based on a “credit” (or window)
mechanism as discussed earlier. Namely, the receiver grants
transmission credits to the sender as soon as reassembly
buffers become free. Upon receiving a credit, the sender is
authorized to transmit a message of an agreed-upon length.
When reassembly buffers become full, no credits are returned
to the sender, thus temporarily stopping message transmissions

The credit scheme described above is somewhat vulnerable
to losses, since a lost credit may hang up a connection. In fact,
a sender may wait indefinitely for a lost credit, while the
receiver is waiting for a message. A more robust flow control
scheme is obtained by numbering credits relative to the
messages flowing in the opposite direction. In this case, each
credit carries a message sequence number, say N , and a
“window size” w. Upon receiving this credit, the sender is
authorized to send all backlogged messages up to the (N $.
w)th message. With the numbered credit scheme, if a credit
is lost then the subsequent credit will restore proper informa-
tion to the sender [45].

Besides preventing destination buffer congestion, the
credit scheme also indirectly provides global network con-
gestion protection. In fact, store-and-forward buffer con-
gestiori at the intermediate nodes along the path may cause a

P I .

571

I I I I I I I I I

I I

/ \CONTROLLED NETWORK I

/// ‘UNCONTROLLED NETWORK 1

NETWORK OPERATION TIME = 95 SEC 1
o v I 1 I I 1 I I I
0 40 80 120 160 200 240 280

GENERATED LOAD (NO. OF PACKETS) x 1 O2

Fig. 22. Throughput performance in Cigale with and without flow
control.

large end-to-end credit delay, thus slowing down the return
of credits to the sender, and consequently, reducing the rate
of fresh messages input into the network.

B. Implementations
Several versions of the transport protocol are in existence,

each incorporating its own form of transport level flow control.
Here, we briefly describe four representative implementations.

The earliest example of transport protocol implementation
is the original version of the ARPANET network control pro-
gram (NCP) [4]. NCP flow control is provided by unnumbered
credits called “allocate” control messages (see Section IV-D).
Only one allocate could be outstanding at a time (i.e., window
size W = 1).

The French research network Cyclades provided the en-
vironment for the development of the transport station
(TS) protocol [SO]. In the TS protocol, the flow control
mechanism is based on numbered credits, each credit author-
izing the transmission of a variable size message called a
letter. Flow control is actually combined with error control
in that credits are carried by acknowledgment messages.

The transmission control program (TCP) was a second
generation transport protocol developed by the ARPANET
research community in order to overcome the deficiencies
of the original NCP protocol [5] . As in the TS protocol,
flow and error control are combined in TCP. As a difference,
however, error and flow control are on a byte (rather than
letter) basis. This allows a more efficient utilization of re-
assembly buffers at the destination.

In SNA, the transport level flow control is provided by
session pacing. The purpose of session-level pacing is to pre-
vent one session end from sending data more quickly than
the receiving session end can process the data [161 . As in TCP
and TS, session-level pacing is based on a window concept, in
which the receiving end grants “credits” to the sending end
based on its buffer availability and processing capability. As
a difference, however, subarea nodes in SNA can control the
inbound flow from a cluster controller into the network by
withholding the credits (called pacing responses in SNA)

572 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

for a given session, if the subarea node buffers are congested
or if the Virtual Route (VR) transmission queue for that
session is congested. Specifically, session level pacing responses
are intercepted at the entry node to exercise network access
flow control from the terminal into the high-level network
[161 . Thus, session pacing may be viewed as a hybrid form of

transport level flow control, which is obtained by concatenat-
ing a network access level segment (from the terminal to the
high-level network node) and an entry-to-exit level segment
(controlled by virtual route pacing).

VII. CONCLUSIONS AND DIRECTIONS FOR FURTHER
RESEARCH

In this paper we have proposed a taxonomy of flow control
mechanisms based on a multilevel structure. We have defined
four levels of flow control and have shown how these levels
are actually embedded into corresponding levels of protocols.
To the extent that these levels.can be independently defined,
the analysis,. design evaluation and comparison of flow control
schemes is greatly simplified, since any complex control struc-
ture can be decomposed. into smaller modules, and each
module individually analyzed. The overall performance is then
obtained by studying the interaction of the various modules.

Recent advances in queueing theory have led to reasonable
success in the modeling and analysis of individual levels of
flow control. We have reported on several performance results,
and have used such results to compare different schemes.

In real life, however, some control structures defy the
simple, hierarchical representation here proposed, and seem
to combine two or more levels into hybrid solutions (see
Fig: 10). This is particularly common in homogeneous net-
works (e.g., SNA) in which a single manufacturer is responsible
for the implementation of both DCE and DTE equipment and,
therefore, has more freedom in the design of the various
flow control levels.

The existence of multiple levels of flow control and the
possible integration of some of these into hybrid arrange-
ments immediately brings up a very critical issue in flow
control which requires further study, namely, the interaction
between levels. Given that we understand the throughput and
delay implications of each specific level of flow control, we
still have to study the combined effect when these levels are
operating simultaneously in the network. For instance, net-
work experience seems to indicate that a network equipped
with a very conservative hop level flow control, such as the
SBP scheme in GMDNET or the VC-HL scheme in Tymnet,
does not require strong network access or ETE flow control
schemes since network congestion situations are immediately
reported back to the entry node by back pressure through the
hop level [36]. This type of issue can be fully investigated
only by developing models which include multiple levels of
flow control. An interesting example in this direction was the
combined isarithmic and entry to exit flow control model
presented in [47] . More research is required in this area.

Hybrid packet and circuit networks are now emerging as a
solution to multimode (voice and data; batch and interactive)
user requirements [l 11 . These networks must be equipped
with novel flow control mechanisms. In fact, if the network

were to apply conventional flow control schemes to the
packet switched (P/S) component only, leaving the circuit
switch (C/S) component uncontrolled, then the C/S component
would very likely capture the entire network bandwidth
during peak hours. This may not cause congestion, since the
C/S protocol is not as congestion prone as the P/S protocol,
but it certainly creates unfairness. Some form of flow control
on C/S traffic which is sensitive to the relative P/S load is
therefore required.

The integration of voice and data requirements in packet
switched networks has been vigorously advocated in recent
years on grounds of improved efficiency and reduced cost
[14]. Unfortunately, little attention has been given to the
fact that integrated networks require a complete redesign of
the conventional flow control schemes since voice traffic
cannot be buffered and delayed in case of congestion. Priorities
are of help only if the voice traffic is a small fraction of the
total traffic. For the general case, new flow control techniques
must be developed for voice. These techniques should be
preventive in nature, i.e., they should block calls before
congestion occurs, rather than detecting congestion and then
attempting to recover from it, as is the case for most of the
conventional flow control schemes for data [101 , [3 I] .

Routing and flow control procedures have traditionally
been developed independently in packet networks, under
the assumption that flow control must keep excess traffic
out of the network, and routing must struggle to efficiently
transport to destination whatever traffic was permitted into
the network by the flow control scheme. It seems, however,
that routing and flow control can be brought together into
useful cooperation in virtual circuit networks, where a path
must be selected before data transfer on a user connection
begins [12] . In this case, the routing algorithm can be in-
voked first to determine whether a path of sufficient residual
bandwidth is available. If no path is available, the virtual
circuit connection is blocked immediately at the entry node
by the network access flow control level, thus preventing
congestion rather than allowing it to occur and then attempting
to recover from it. A combined routing and flow control
strategy is implemented in Tymnet [39] .

Challenging flow control problems exist in multiaccess
broadcast networks. In single hop multiaccess systems, con-
gestion prevention and stability mechanisms are well under-
stood, and are usually directly embedded in the channel
access protocol [46]. In distributed, multihop, multiaccess
systems (e g , multihop ground radio networks), congestion
prevention becomes a very hard problem because of the
interaction between buffer and channel congestion. Con-
ventional flow control schemes used in hardwired nets can-
not be directly applied. In particular, the hop level flow
control should be revised to combine the buffer allocation
strategy with the retransmission control strategy. Some
pioneering work in this direction is reported in [2], [48],

Finally, growing user demands require the interconnection
of networks which may implement different flow control
policies and which may even be built on different media
(e.g., satellite, radio, cable, or optical fiber). These networks

[431.

GERLA AND KLEINROCK: FLOW CONTROL

are interconnected by gateways which provide for internet
routing and flow control, as well as for protocol conversion
between two adjacent networks [44], [6]. It appears that.+:a
new level of flow control must therefore be defined in our
hierarchy, namely, the gateway-to-gateway level. n1.s level
should be designed to prevent the congestion of gateways
along the path, and should be supported by explicit gateway-
to-gateway protocols for the exchange of status information.
The status information should include buffer occupancy at
the gateway, and load conditions in the adjacent networks,
and could probably be exploited also for gateway routing.
Functionally, the gateway-to-gateway protocol is positioned
between the entry-to-exit protocol and the transport protocol
hierarchy in Fig. 9. All the other levels remain unchanged. The
actual implementation of the gateway-to-gateway flow control
will be dependent on the internet protocol used. If the CCITT
X.75 Recommendation, which is an extension of the X.25
virtual circuit concept to internet connections [45] is adopted,
the gateway-to-gateway flow control will be virtual-circuit
oriented, and will be exercised on a connection-by-connection
basis. Alternatively, datagram-oriented gateway level flow
control schemes can also be implemented.

The design of efficient gateway flow control schemes is
very challenging. It requires vertical consistency between the
gateway level and all the other levels implemented in each
individual network as well as horizontal consistency across
the various networks on the internet path. Specifically, the
gateway level flow control must be able to balance loads
between extremely diverse network environments such as
point-to-point, satellite, cable, and ground radio. These design
requirements further emphasize the need for continuing
research in multilevel flow control models in order to under-
stand the vertical interactions between the various levels in
the hierarchy, as well as the horizontal interactions between
the various segments of a flow control chain along an internet
path.

In summary, we have presented a framework for the study
of flow control, showing that flow control mechanisms have
advanced somewhat beyond simply being “a bag of tricks”
[34], and indeed can be conceptually organized into a useful
and well-structured system of controls. This structure is
extremely helpful in the survey and comparison of existing
flow control implementations, as well as in the development
of flow control models. In particular, complex control systems
can be (and should be) decomposed into smaller modules,
thus simplifying the analysis of each module as well as the
analysis of interactions between different modules. Further-
more, the proposed flow control structure is sufficiently
flexible to permit extensions in response to new networking
technologies and applications.

Although our focus has been on flow control models and
performance criteria, we expect that the proposed structure
will prove to be useful also for the actual implementation of
flow control techniques. One must be aware, of course, of the
fact that in actual networks, it is not always possible to
develop and update flow controls in a well structured fashion.
The designer, in fact, is usually confronted with a number
of constraints imposed by the preexisting protocol structure

513

(in which flow control mechanisms must be embedded) and
by limited storage and processing resources. The designer
must therefore avoid overburdening the switch with overly
sophisticated flow control mechanisms, and creating incon-
sistencies and possibly deadlocks. These constraints, together
with the fact that flow control is a distributed multilevel
control function that cannot be confined to a well-defined
modular “black box,” make flow control design a very hard
task. It is our strong opinion, however, that the only way to
prevent flow control implementations from degrading to the
state, of an uncontrollable “bag of tricks” is to identify an
underlying structure in the early stage of flow control design,
and to continuously verify this structure during the various
updates of protocols and flow control procedures.

Indeed, it is important that one be able to subject a pro-
posed flow control algorithm to various tests of correctness,
consistency and proper termination [33] , [49]. This is, in
general, a very difficult task whose solution requires advances
in the frontier of computer science. Unfortunately, since it
is relatively difficult to create efficient, deadlock-free, flow
control algorithms, we cannot totally ignore this need for
verification. Moreover, many difficulties with flow control
procedures often arise due to errors in the detailed imple-
mentation of otherwise correct algorithms. Consequently,
it is important that a modular approach to flow control
design be taken, that the code itself be confined to isolated
portions of the network operating system (rather than
sprinkled through thousands of lines of code) and that the
mechanisms be simple enough to be understood and tested via
simple procedures.

REFERENCES
V. Ahuja, “Routing and flow control in systems network architecture.”
IBM Syst. J . , vol. 18, no. 2, pp. 298-3 14. 1979.
G. Akavia and L. Kleinrock, “Performance tradeoff distributed packet-
switching communication networks,” Dep. Comput. Sci.. School of
Eng. Appl. Sci.. Univ. of California, Los Angeles. Tech. Rep. UCLA-
ENG-7942. Sept. 1979.
P. Brinch-Hansen, Operating System Principles. Englewood Cliffs,
Prentice-Hall, 1973.
S . Can et a / . . “Host/host protocol in the ARPA network.” in Proc.
Spring Joint Comput. Conf., 1970, pp. 589-597.
V. G. Cerf and R . Kahn, “A protocol for packet network intercom-
munication,” IEEE Trans. Commun., vol. COM-22, May 1974.
V. G . Cerf, “DARPA activities in packet network interconnection,” in
Interlinking of Computer Networks (NATO Advanced Study Inst.
Series). Reidel.
A. Danet et al . , “The French public packet switching service: The
Transpac network,” in Proc. Conf. Comp. Commun., Toronto. Ont..
Canada, Aug. 1976.
D. W. Davies, “The control of congestion in packet-switching net-
works,” IEEE Trans. Commun.. vol. COM-20. June 1972.
H. C. Folts, “International standards in computer communications,” in
Proc. Nut. Telecommun. Conf.., Nov. 1979, pp. 59.5.1-59.5.5.
J . Forgie and A. Nemeth, “An efficient packetized voice/data network
using statistical flow control,” in Proc. Int. Conf. Commun. Chicago,
IL, June 1977. a

M. Gerla and G. DeStasio, “Integration of packet and circuit transport
protocols in the TRAN data network,” in Proc. Comput. NetworkSymp.,
Liege, Belgium. Feb. 1978.
M. Gerla. “Routing and flow control in virtual circuit computer net-
works.” in Proc. INFO I I Int . Conf., July 1979.
A. Giessler er al . , “Free buffer allocation-An investigation by
simulation.” Comput. Networks, vol. 2. pp, 191-208. 1978.
I . Gitman and H. Frank. “Economic analysis of integrated voice and data
networks.” Proc. IEEE. pp. 1549-1570, NOV. 1978.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

J . P. Gray, “Network services in systems network architecture,” IEEE
Trans. Commun., vol. COM-25. pp. 104-1 16. Jan. 1977.
J . P. Gray andT. B. McNeill. “SNA multiple-system networking.” IBM
Svst. J . , vol. 18, no. 2. 1979.
P. E. Green, “An introduction to network architectures and protocols,”
IEMSvst. J . no. 2, 1979, reprinted in this issue. pp, 413424.
M. Irland, “Buffer management in a packet switch,” IEEE Trans.
Commun., vol. COM-26. pp. 328-337. Mar. 1978.
R. E. Kahn and W. R. Crowther, “A study of the ARPA computer

Tech. Rep. 2161,Aug. 1971.
network design and performance,” Bolt Beranek and Newman. Inc.,

F. Kamoun, “Design considerations for large computer communications
networks,” Ph.D. dissertation, Univ. of California, Los Angeles, Eng.
Rep. 7642, Apr. 1976.
F. Kamoun, “A drop and throttle flow control (DTFC) policy for com-
puter networks,” presented at the 9th Int. Teletraffic Congr., Spain, Oct.
1979.
P. Kermani and L. Kleinrock, “Dynamic flow control in store and
forward computer networks.” IEEE Trans. Commun., vol. COM-27.
Feb. 1979.
L. Kleinrock, Queueing Systems: Volume I I . Computer Applica-
tions. New York: Wiley-Interscience, 1976.
-, “On flow.control in computer networks.” in Proc. Int. Conf.
Commun.. June 1978.
-, “Power and deterministic rules of thumb for probabilistic
problems in computer communications.” in Proc. Int. Con5 Commun.,
June 1979.
L. Kleinrock and P. Kermani: “Static flow control in store and forward
computer networks,” 1EEETrans. Commun., vol. COM-27. Feb. 1979.
S . Lam and M. Reiser, “Congestion control of store and forward
networks by buffer input limits,” in Proc. Nut. Telecommun. Conf. .. Los
Angeles. CA, Dec. 1977.
R. Magoon and D. Twyer, “Flow and congestion control in SL-IO
networks,” in Proc. Int. Symp. Flow Control Comput. Networks.
Versailles, France, Feb. 1979.
J. C. Majithia et al.. “Experiments in congestion control techniques,”
in Proc. Int. Symp. Flow Control Comput. Networks, Versailles. France,
Feb. 1979.
J . M. McQuillan et al., “Improvements in the design and performance of
the ARPA network,” in Proc. FallJoint Comput. Conf. .. 1972.
W. E. Naylor, “Stream traffic communication in packet-switched net-
works.” Ph.D. dissertation, Dep. Comput. Sci., School Eng. Appl. Sci.,
Univ. of California, Los Angeles, Sept. 1977.
M . Pennotti and M. Schwartz. “Congestion control in store and forward
tandem links,” IEEE Trans. Commun., Dec. 1975.
J. Postel, “A graph model analysis of computer communications
protocols.” Ph.D. dissertation, Univ. of California, Los Angeles. Jan.
1974.
L. Pouzin, “Flow control in data networks-Methods and tools,” in
Proc. Int. Conf. Comp. Commun.. Toronto. Ont. Canada, Aup. 1976.
W. L. Price. “Data network simulation experiments at the National
Physical Laboratory.” Comput. Networks. vol. I. 1977.
W. L. Price, “A review of the flow control aspects of the network
simulation studies at the National Physical Laboratory.” in Proc. Int.
Symp. Flow Control in Comput. Networks. Versailles. France, Feb.
1979.
E. Raubold. and J. Haenle, “A method of deadlock-free resource alloca-
tion and flow control in packet networks,” in Proc. Int. con$ c o w .
Commun., Toronto Ont., Canada. Aug. 1976.
M. Reiser, “A queueing network analysis of computer communication
networks with window flow control,” IEEETrans. Commun.. pp. 1199-
1209, Aug. 1979.
J . Rinde, “Routing and control in acentrally directed network,” in Proc.
Nut. Comput. Conf., Dallas, TX, June 1977.
J . Rinde and A. Caisse, “Passive flow control techniques for distributed
networks,” in Proc. Int . Svmp. Comput. Networks. Versailles. France.
Feb. 1979.
M. Schwartz. and S . Saad. “Analysisof congestion control techniques in
computer communications networks,” in Proc. Int. Svmp. Cornput.
Networks. Versailles. France. Feb. 1979.
J . M. Simon and A. Danet, “Controle des ressources et principes du
routage dans le reseau TRANSPAC,” in Proc. Int. svmp. Comput.
Networks. Versailles, France, Feb. 1979.

J . Silvester “On spatial capacity of packet radio networks.” Ph.D.
dissertation. Dep. Comput. Sci.. School Eng. Appl. Sci., Univ. of
California. Los Angeles, Mar. 1980.
A. C. Sunshine. “Interconnection of computer networks.” Cornput.
Networks. vol. I , 1977.
A. C. Sunshine, “Transport protocols for computer networks,” in
Protocols and Techniques for Data Communications Networks. F. KUO.
Ed. Englewood Cliffs. NJ: Prentice-Hall. 1980.
F. Tobagi, “Multiaccess protocols in packet communication systems.”
this issue, pp. 468488.
J. W. Wong, and M. S. Unsoy, “Analysis of flow control in switched
datanetworks,” in Proc. Int. Fed. In$ ProcessingSoc. Conf., Aug. 1977.
Y. Yemini and L. Kleinrock, “On a general rule for access control or,
silence is golden., , ,” in Proc. Int. Symp. Flow Control Comput. Net-
works, Versailles. France, Feb. 1979.
P. Zafiropulo. “A new approach to protocol validation.” in Proc. Int.
Cony. Commun. June. 1977.
H. Zimmermann, “The Cyclades end-to-end protocol,” in Proc. 41h
Data Commun. Svmp., Quebec. P. Q.. Canada. Oct. 1975, pp. 7:21-26.
Schwartz and Stem. “Routing algorithms: A comparative survey.” this
issue, pp. 539-552.

*

*
Leonard Kleinrock (S’55-M’64-SM’7 I-F’73) re-
ceived the B.E.E. degree from the City College of
New York, New York, NY, in 1957. and the
M.S.E.E. and Ph.D.E.E. degrees from Massachu-
setts Institute of Technology, Cambridge, in 1959
and 1963, respectively.

In 1963. he joined the faculty of the School of
Engineering and Applied Science, University of
California, Los Angeles, where he is now Professor
of Computer Science. His research spans the fields of’
computer networks, computer systems modeling and

analysis. queueing theory, and resource sharing and allocation in general. At
UCLA, he directs a large group in advanced teleprocessing systems and com-
puter networks. He is the author of three major books in the field of computer
networks: Communication Nets: Stochastic Message Flow and Delav (New
York: McGraw-Hill. 1964; also New York: Dover, 1972); Queueing Systems.
Vol. 1. Theoty (New York: Wiley-Interscience. 1975); and Queueing Svstems.
Vol. II : Computer Applicarions (New York: Wiley-Interscience, 1976). He has
published over 1 0 0 articles and contributed to several books. He serves as
consultant formany domestic and foreign corporations and governments. and he
is a referee for numerous scholarly publications and a book reviewer for several
publishers.

Dr. Kleinrock is a Guggenheim Fellow and has received various outstanding
teacher and best paper awards, including the 1976 Lanchester prize for the
outstanding paper in operations research. and the ICC 1978 prizewinning paper
award.

